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Abstract 

The paper describes an approach to modelling the conductance of a textronic structure based on the iterative 

fundamental solutions method. The analysis of the current density distribution in a thin conductive layer 

containing roughness resulting from the applied manufacturing technology is aimed at estimating its impact on 

the total current and the conductivity of the conductive path. The simulations showed that the current density 

distribution in a conductive path depends on the nature of its surface, and increasing its roughness reduces its 

conductance. The proposed solution makes it possible to define a structure model in three geometrical 

dimensions, and its numerical implementation in the form of the proposed method ensures efficiency and 

computational accuracy. 
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1. Introduction 

Textronic structures are a complex class of materials that combine the features of electronic devices 

and textile structures. Due to their unique properties, such as high mechanical strength, flexibility, and 

electrical conductivity, these materials are widely used in areas such as electronics, medicine, 

automation, and textiles [1]. 

     

Fig. 1. The textronics area (a) [4] and typical realizations of textronic structures: conductive threads intertwined between the 

fibers (b) [4], conductive surfaces sputtered onto the textile material (c) 

Textronic products are currently used most frequently in uniformed and rescue services and as 

everyday items [2]. From the textile technology side, textronic systems require the use of materials such 

(a) (b) (c) 
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as fibers, threads, electrically conductive fabrics, piezoelectric fabrics, magnetic fibers, optical fibers 

and textiles with shape memory as well as electroactive polymers. As electronic systems, these structures 

should show adequate accuracy and repeatability of response to control signals as well as resistance to 

external factors such as humidity or temperature. The implementation of such structures can be achieved 

by interlacing thin conductive threads between the fibers of the textile material [3] or using the physical 

vapour deposition (PVD) method [4]. Based on textronic structures, sensors and wearable electronic 

devices are built in the form of clothing, jewelry, watches, wristbands, glasses and others. Thanks to 

them, various physiological, environmental or behavioral parameters of the user, such as heart rate, 

blood pressure, body temperature, blood, glucose level, body position, movements, physical activity or 

location, can be monitored in real time [5-8]. The basis for the continuous development of the above 

technologies is the ability to implement new solutions using computer models that optimize project 

costs. In this area, numerical models dedicated to structures composed of thin conductive threads are 

known [9-11], but there is a still deficit of models intended for layered structures made using the PVD 

method. Existing models [12-13] assume infinitely thin conductive layers, limiting the model geometry 

to 2 dimensions. This article is the result of work aimed at expanding the possibilities of simulation in 

the above-mentioned area 

The aim of this work is to develop a three-dimensional textronic structure model (3D TSM) realised 

by using the PVD method. Analysis of the distribution of current density in a thin conductive layer that 

contains narrowing resulting from the gravitational deposition of conductive particles on the fabric aims 

to estimate its impact on the total current and conductance of the conductive path. 

2. Formulation of the problem 

A model of a conductive layer deposited on a textile substrate is considered, which is illustrated in 

Fig. 2. The analysed area  is limited by six surfaces marked as S1, …, S6. Surfaces S1, …, S4 are flat, 

and the surfaces S5 and S6 spaced d apart have periodically distributed ridges and depressions. Its shape 

and arrangement can generally be different and depend on the type of textile fabric weave that is 

modelled. In this work, it was assumed to model them using the sine functions with a given amplitudes 

A1 and A2 for S5 and S6 surfaces respectively. These functions are mutually perpendicular and run in 

directions parallel to the surface of the fabric.  

 

Fig. 2. Simplified concept of the 3D Textronic Structure Model (3D TSM): boundary surfaces and voltage polarization 

system (a); view of the model in a cross-section with plane P (b) and top view of the model (c) 

The mathematical description of the area modelling the conductive layer on the textile substrate is 

presented by the relations: 
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It is assumed that the area  is filled with a homogeneous, isotropic and linear conductor 

(  = const), in which there are no unbalanced electric charges ( = 0), its surroundings are an ideal 

dielectric ( = 0) and that there is a constant voltage U between the surfaces S1 and S2 (see Fig. 2).  

For the assumptions presented above, the problem of calculating the current flow field boils down 

to searching for the distribution of electric potential defined as: 

(a) (b) 

(c) 
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 grad−=E  (2) 

where E


 is the electric field strength. The potential  meets the Laplace equation:  

 0=  (3) 

and mixed boundary conditions: 

 U= on the surface S1 (4) 

 0=  on the surface S2 (5) 

   0=




n


on the surface Si, i = 3, 4, 5, 6  (6) 

After solving the problem formulated above, the current density distribution sought is determined 

on the basis of (2) and the local Ohm's law:  

 EJ  =  (7) 

and the current from the dependence: 

  =

S

d sI J , (8) 

where S can be any section of the area  connecting the surfaces S3 and S4 (e.g. for x = const) 

3. Solution of the problem 

In order to solve the problem described by formulas (3) - (6), the fundamental solutions method 

(FSM) was applied [5]. In the next iteration steps, successive approximations of the sought potential 

function are calculated according to the formula: 
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where: k – iteration step number,  

( )zyx  , ,=r  – any point within the  area, 

qk,n – approximation sum coefficients calculated on the basis of boundary conditions, 

nk
nkF

,
,

1
)(

rr
r

−
=  – fundamental solution of the Laplace equation, 

nk ,r  – fixed points lying outside the  area (singular points of the function Fk,n ), 

Lf – the number of fundamental solutions considered in a single iteration step. 

The function )(~
0 r was assumed (primary field): 
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This function satisfies equation (3) and boundary conditions (4) - (6) on the surfaces: S1, S2, S3, S4, 

which significantly accelerates the convergence of calculations. It should also be noted that regardless 

of the value of the coefficients qk,n  each function described by the formula (9) satisfies equation (3) 

exactly, and the selection of points outside the  area nk ,r  guarantees its finiteness in this area.  

The values of the coefficients qk,n  are determined in such a way as to obtain the best possible 

improvement of the fulfillment of the boundary conditions by the function )(~ rk in a given iteration 

step in relation to the iteration calculated in the previous step. For this purpose, a measure of the accuracy 

of meeting the boundary conditions by the function )(~ rk should be defined. On individual boundary 

surfaces of the area, functions of local, relative edge errors of the solution are: 
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where: 
xd

U
E =0  is the primary electric field strength (see eq. (10), (2)), and the boundary error 

functional: 
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which is a measure, in the sense of the mean square norm, of jointly meeting the boundary conditions 

(4) - (6) by solution (9). Postulating the minimization of this functional with respect to the set of 

parameters qk,n 
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a linear system of equations is obtained: 
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whose coefficients are expressed by dependencies: 
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where n̂  is the normal to the surface Si at r point. 

After numerical solution of the system (16) (e.g. by Gaussian elimination method), the sought set 

of coefficients qk,n  are obtained and the next iteration step follows. In each step, the local error functions 

(11) - (13) and the boundary error function are calculated, which allows you to control the rate of 

convergence of the procedure on an ongoing basis and automatically interrupt it when the required 

accuracy is achieved. Using the basic approximation theorem on the existence and uniqueness of the 

solution to the linear approximation problem [6], it can be shown that: 

 1− kk   (20) 

which ensures the convergence of the described procedure. 

It should be noted that the choice of functions Fk,n in (9) boils down to determining their singular 

points nk ,r . As follows from (20), this choice does not affect the exact fact of convergence of the 

procedure, but the rate of convergence depends on it. There are no general rules on how to make such a 

choice optimally (in principle, you can create a procedure that would find such an optimal set of points 

nk ,r in each iteration step, but it is unprofitable from the point of view of the speed of convergence of 
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the method in real time). In the numerical application created to solve the problem formulated here, in 

each iterative step, these points are randomly selected from many pregenerated points, uniformly 

surrounding the  area. 

The convergence rate of the proposed method also depends on the number of Lf of the fundamental 

solutions considered in each iteration step. It can be set freely - from Lf = 1 to a value limited only by 

the capacity of the computer's operating memory, which must fit the coefficients of the system of 

equations (16). The greater the number Lf, the smaller the number of iteration steps needed to obtain the 

required accuracy and the smaller the total number of fundamental solutions in the final solution (total 

length of the approximation sum). However, it should be noted that the value of Lf greatly affects the 

time of a single iteration step, which is mainly influenced by the need to calculate surface integrals 

occurring in (17) and (18). Numerous numerical experiments by the authors have shown that in many 

cases the adoption of Lf = 1 gives the fastest convergence of the procedure in real time. In this case, the 

need to numerically solve the system of equations (16) is also avoided. 

A certain drawback of the described procedure (e.g. in relation to the classic, collocation version 

of MRF) is the need to numerically calculate many surface integrals (cf. formulas (14), (17), (18)). This 

difficulty can be significantly alleviated by using the proper mean square norm, the so-called 

pseudonorm, i.e. assuming the definition of the boundary error functional as: 
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where jr  are points distributed densely and more or less evenly on the boundary surfaces of the  area. 

With this approach, formulas (17), (18) take the form:  
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That is, all integrals are replaced by simple sums. The use of a pseudonorm instead of a proper norm 

is formally a less strict approach, because in this case the minimisation of the boundary error applies to 

a discrete set of boundary points, not to the entire surface. However, it should be noted that any 

numerical procedure for computing integrals is burdened with a similar inaccuracy because it must also 

be based on a discrete, "reasonable" representation of the integrand function [7]. 

2. Simulation results 

Using the TSM, the current density distribution in the conductive path of the tested structure was 

simulated and the examples results are presented in figures 3-4. 

        

 

 

 

 

 

 

Fig. 3. The current density distribution in the form of a vector field for the 3D TSM illustrated in Fig. 2. Chart (a) illustrates 

the results in the top surface of the conductive path (S6), however, charts (b) and (c) in the XZ plains for y/d = 6.25 (Q1) y/d = 

5 (Q2), respectively 

(b) (a) 

(c) 
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Fig. 3 (a) illustrates the current density distribution in the form of a vector field on the top surface 

of the conductive path (S6). The lengths of the arrows represent the moduli of the current density vectors 

calculated as the ratio of the current density J at a given point to the current density J0 at the same point 

in the case of a completely flat conductive path. If we compare these results with the graph shown in 

Fig. 3 (b) which illustrates the same vector field in the XZ plane for y/d = 6.25 (see line Q1 in Fig. 3 (a)), 

we can see that the current flow is concentrated along the shortest path between the hills of the 

conductive surface. This nature of the current flow is confirmed by the results in Fig. 3 (c) showing the 

vector field of the current density in the XZ plane for the parameter y/d = 5. This plane does not intersect 

the hills of the conductive path and is rectangular in shape, which gives an effective cross-section for 

the current flow and makes the current density the highest here.  

The results presented in Fig. 3 allow us to put forward the thesis that roughness on the surface of 

the conductive path is a significant obstacle to the current flow. To test this thesis, further calculations 

were carried out, the results of which are shown in Fig. 4. 
 

 

Fig. 4. Changes in the total current (I) of the TSM obtained by increasing the amplitude (A) of the conductive path roughness 

refer to its maximum value (Imax) corresponding to the flat surface of the path. 

This figure shows changes in the total current (I) of the TSM obtained by increasing the amplitude  

(A = A1 = A2) of the conductive track roughness referring to its maximum value (Imax) corresponding to 

the flat surface of the track. The results confirm the above thesis, as can be seen for a fixed voltage U, 

as the amplitude of the conductive path roughness increases, the I/Imax ratio corresponding to the 

conductivity of the tested structure decreases. Qualitative confirmation of the above conclusions can be 

found in the results of measurements carried out in the work [17], where the authors note clear changes 

in resistivity caused by changes in temperature, which may be due to the smoothing of the conductive 

surface of the structure. 

3. Conclusion 

A 3D model of the textronic structure produced by the PVD method was developed. The applied 

Fundamental Solutions Method ensured accurate and quick calculations of the basic transport 

parameters of the tested structure. The simulations showed that the current density distribution in  

a conductive path depends on the nature of its surface, and increasing its roughness reduces its 

conductance. This gives inspiration for further research focused on the impact of the shape of the 

conductive path on the properties of ST transport parameters.  
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