
  
This is an Open Access article distributed under the terms of the CC-BY-NC-ND 3.0 PL license, which permits oth-

ers to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain 

permission to distribute this article, provided that the original work is properly cited. 

 

 

A d v a n c e s  i n  I T  a n d  E l e c t r i c a l  E n g i n e e r i n g  

 

vol. 30, 2024, 49-59 

https://doi.org/10.7862/re.2023.x 
 

 

Original Research/Review 

Impact of Artificial Intelligence on Computer Networks 

Kacper Zdrojewski 1* 

1 Department of Information Technology Networks, Regional Information Technology Center Warsaw, 00-909 

Warsaw, Poland. 

* Corresponding author. kacper.zdrojewski.1997@gmail.com 

Received: 24 October 2024 / Accepted: 23 December 2024 / Published online: 31 December 2024 

Abstract 

The integration of artificial intelligence (AI) into computer networks has rapidly evolved, influencing network 

architecture, security measures, and traffic management. This paper explores AI's transformative impact on 

these areas, focusing on advancements in machine learning (ML), deep learning (DL), and reinforcement learn-

ing. These innovations are reshaping network security by improving threat detection and anomaly identifica-

tion, as well as enhancing traffic management through predictive and adaptive routing. AI-driven systems are 

also making strides in automating network management tasks, allowing for more efficient resource allocation 

and self-healing networks. Despite these advancements, challenges remain, particularly concerning the integra-

tion of AI with legacy infrastructures and the ethical implications of AI decision-making processes.  
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1. Introduction 

In recent years, the integration of artificial intelligence into various domains has revolutionized 

industries, with computer networks being a notable beneficiary of these advancements. As global inter-

net traffic grows exponentially, driven by the proliferation of Internet of Things (IoT) devices, cloud 

computing, 5G technology, and the ever-increasing demand for bandwidth, the complexity of managing 

and securing networks has become a critical challenge. Traditional network management techniques, 

often based on manual configuration and rule-based systems, struggle to cope with this increasing com-

plexity and the dynamic nature of modern networks. 

 Simultaneously, the number and sophistication of cyber threats continue to grow. Traditional in-

trusion detection systems (IDS) rely heavily on predefined signatures or rules to detect known threats. 

While effective against previously encountered attacks, these systems often fail to identify novel or 

evolving threats, such as zero-day vulnerabilities or advanced persistent threats (APTs) [2]. This has led 

to a paradigm shift towards more adaptive, AI-driven approaches. 

AI, particularly machine learning and deep learning, offers promising solutions to these challenges. 

By leveraging vast amounts of historical and real-time data, AI models can learn traffic patterns, detect 

anomalies, and make decisions autonomously. For instance, AI-driven systems can automatically adjust 

traffic routing based on real-time congestion data, ensuring optimal performance and minimizing packet 

loss. In terms of security, AI systems can detect and mitigate threats more efficiently by identifying 

anomalous behavior that might indicate the presence of malicious activity [2, 3]. 

Moreover, reinforcement learning (RL) has enabled networks to adapt in real-time by optimizing 

routing paths and network configurations dynamically. These RL-based systems learn by continuously 

interacting with the network environment, making them ideal for highly dynamic network scenarios, 

such as mobile ad hoc networks (MANETs) or multi-cloud architectures. 

https://doi.org/10.7862/re.2023.x


50                                                                                                           Zdrojewski K. 

Advances in IT and Electrical Engineering, vol. 30, 2024, 49-59 ISSN 0000-0000 

However, the deployment of AI in network environments also presents unique challenges. The 

integration of AI systems with legacy network infrastructure is often difficult due to hardware limita-

tions or the lack of necessary computational resources. Additionally, the growing reliance on AI for 

critical network functions raises concerns regarding accountability, transparency, and the potential for 

bias in AI decision-making processes [1]. Despite these challenges, the potential benefits of AI integra-

tion into computer networks - such as enhanced security, more efficient traffic management, and auton-

omous network operations - are vast and continue to drive research and development in this area. 

This paper delves into the multifaceted impact of AI on computer networks, examining how AI can 

address current networking challenges and predict future trends. Artificial intelligence refers to the sim-

ulation of human intelligence by machines, encompassing a broad range of techniques and approaches. 

These include machine learning, where systems learn from data to make predictions or decisions, and 

deep learning, a subset of ML that uses neural networks to model complex patterns in data. Computer 

networks refer to interconnected systems of devices and communication technologies that enable data 

exchange. These networks can be viewed from different perspectives, including physical infrastructure 

(e.g., wired or wireless networks), logical architecture (e.g., client-server or peer-to-peer models), and 

functional layers such as transport, application, or network layers in the OSI model. This article focuses 

on how AI can enhance the management and optimization of such networks across various layers, par-

ticularly in areas like traffic management, security, and resource allocation. 

2. AI in Network Security  

AI has become indispensable in securing modern computer networks, where the volume and com-

plexity of cyberattacks are constantly growing. Traditional network security methods, such as firewalls 

and signature-based intrusion detection systems, are increasingly insufficient in the face of sophisticated 

threats. AI enhances network security by enabling dynamic threat detection and rapid response to anom-

alies. ML-based IDS can analyze historical network traffic data to identify malicious patterns, while DL 

systems improve this capability by learning from unstructured data and detecting novel attacks. 

2.1. Machine Learning in Intrusion Detection 

Intrusion detection focuses on identifying unauthorized access and abnormal activities within net-

work environments. The primary challenge lies in distinguishing between legitimate and malicious traf-

fic in real-time, a task complicated by the diversity and scale of modern networks. The effectiveness of 

an IDS is typically measured using metrics such as detection rate, false positive rate, precision, recall, 

and F1 score [12, 13]. Traditional methods, relying on predefined signatures (such as Snort1 or AIDE2), 

struggle to detect novel threats such as zero-day attacks, highlighting the need for adaptive, intelligent 

systems. Zero-day attacks are cyber exploits targeting unknown vulnerabilities in software or hardware, 

leaving no time for defensive measures. 

Machine learning has revolutionized intrusion detection by providing more accurate and scalable 

solutions compared to rule-based systems. Supervised learning algorithms, such as Support Vector Ma-

chines (SVM) and Random Forests, are trained on labeled datasets to distinguish between legitimate 

and malicious traffic. However, one limitation is their reliance on large datasets for training, which can 

result in performance issues when faced with zero-day attacks. On the other hand, unsupervised learning, 

including anomaly detection, enables the identification of previously unknown threats by analyzing de-

viations from normal traffic behavior.  

Detecting malicious traffic can be achieved by analyzing its behavior, such as deviations in packet 

flow, unusual connection frequencies, or irregular user activity patterns, a principle employed by behav-

ioral Intrusion Detection Systems [14]. The authors of [14] designed a multi-level intrusion detection 

method for identifying abnormal network behaviors using machine learning techniques. Their approach 

integrates multiple classifiers to detect anomalies at various levels of analysis, starting with broad de-

tection of unusual traffic patterns and proceeding to detailed evaluation of specific threats, such as Dis-

tributed Denial of Service (DDoS) attacks or port scans. The method demonstrated improved accuracy 

in identifying zero-day attacks while significantly reducing false positives, showcasing the effectiveness 

of hierarchical analysis in intrusion detection systems.  

                                                      

1 https://www.snort.org 
2 https://aide.github.io 
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Building on this solution, the authors of [12] developed a specialized IoT crawler integrated into 

the fog layer (network layer), designed to prioritize critical nodes for inspection based on their signifi-

cance within the network. The IoT crawler utilizes a behavioral analyzer with a machine learning core 

to differentiate between malicious and legitimate nodes based on data streams collected from IoT de-

vices. The proponents of this idea evaluated this system using machine learning algorithms like Random 

Forest, AdaBoost, and Extra Tree, achieving a remarkable 98.3% accuracy with the Extra Tree classifier. 

This result highlights the system's ability to process IoT-specific data streams efficiently, adapting dy-

namically to threats without overwhelming resource-constrained IoT nodes. This work demonstrates the 

potential of integrating multi-level machine learning frameworks within IoT ecosystems to enhance real-

time intrusion detection. By leveraging fog computing for reduced latency and prioritizing critical nodes, 

the IoT crawler exemplifies the practical application of advanced machine learning in securing modern, 

heterogeneous networks. 

Mukkamala [6] described approaches to intrusion detection and audit data reduction using support 

vector machines and Neural Networks, highlighting their effectiveness in analyzing high-dimensional 

datasets. The primary goal was to create classifiers capable of distinguishing normal network traffic 

from various types of attacks. The researchers compared the performance of SVM with a radial kernel 

to Neural Networks with two intermediate layers. The results demonstrated that SVM with a radial ker-

nel outperformed Neural Networks in terms of hit ratio and processing time for both model training and 

prediction tasks. This research underscores the potential of SVM in efficiently processing and classify-

ing network traffic, making it a robust solution for real-time intrusion detection in environments char-

acterized by large-scale, complex datasets. 

Similarly, Kim [7] introduced a hybrid intrusion detection model that integrates decision trees (DT) 

with one-class SVM to combine the strengths of anomaly detection and misuse detection. This approach 

addresses the limitations of standalone methods by leveraging the high accuracy of misuse detection for 

known attack patterns and the adaptability of anomaly detection to identify previously unknown threats. 

The researchers proposed a two-stage framework. In the first stage, DT, as a supervised learning algo-

rithm, are employed to quickly and effectively classify known attack patterns. This ensures reliable 

identification of previously encountered threats. In the second stage, a one-class SVM is used to analyze 

the residual data (traffic not classified in the first stage) for potential anomalies. This step enhances the 

system's ability to detect zero-day attacks and other novel intrusions. The study evaluated the hybrid 

method using benchmark datasets, demonstrating that the integration of these techniques improves both 

detection accuracy and processing efficiency. Specifically, the model achieved a significant reduction 

in false positives while maintaining high detection rates, particularly for mixed traffic scenarios. 

The article [16] categorizes various IDS based on deep learning techniques. The authors explore 

how models like autoencoders and Long Short-Term Memory (LSTM) networks can detect anomalies 

in network traffic more effectively than traditional signature-based systems. Autoencoders, as unsuper-

vised learning models, excel at detecting anomalies in network traffic by reconstructing input data and 

identifying deviations that signify potential threats. LSTM networks, on the other hand, are particularly 

effective in modeling sequential data, such as network logs or traffic flows, enabling the detection of 

complex temporal patterns associated with sophisticated attacks. The study showcases that deep learning 

enables real-time analysis and reduces false positives significantly, addressing a key limitation of con-

ventional IDS. 

2.2. Deep Learning for Enhanced Security 

Deep learning models, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), offer superior performance in threat detection by analyzing more complex features. 

For example, RNNs, with their ability to capture temporal dependencies, are effective in detecting at-

tacks like Distributed Denial of Service, where the timing of events is crucial. Furthermore, DL-based 

systems can operate autonomously, learning from new attack patterns without requiring frequent human 

intervention. 

Kou in [4] proposed a network security situational element recognition method combining a deep-

stacked encoder with the backpropagation (BP) neural network algorithm. The method leverages unsu-

pervised learning algorithms to train each layer of the network individually, allowing for a hierarchical 

representation of the data. By stacking the encoders, the method creates a deep-stacked network capable 

of extracting high-dimensional features from raw network data. In the initial stage, unsupervised training 
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is conducted using the stacked encoders to learn meaningful features from unlabeled data. These encod-

ers utilize reconstruction-based loss functions to ensure that the most relevant information is retained 

during feature extraction. Once the unsupervised training phase is complete, the BP algorithm is applied 

to fine-tune the network using labeled data, optimizing it for classification tasks. The authors conducted 

simulation studies to evaluate the effectiveness of this method in enhancing situational awareness in 

network security. The results indicated that the deep-stacked encoder significantly outperformed tradi-

tional models in terms of precision and recall when recognizing situational elements such as potential 

threats, vulnerabilities, and network states. Moreover, the method demonstrated resilience against noisy 

and incomplete data, which are common in real-world network environments. 

In addition, Fu in [5] proposed to use an adaptive genetic algorithm to effectively optimize the 

traditional APT attack prediction model, thereby improving prediction accuracy. This model’s ability to 

accurately predict risk nodes that may be present in the network system as well as to track the progress 

of APT attacks in real time and determine the attack path through sequence attacks greatly enhances the 

network system’s security [1]. 

In 2018, Radford [17] presented an anomaly detection model using a LSTM network to analyze 

network traffic logs for cybersecurity applications. The model was designed to leverage the temporal 

sequence learning capabilities of LSTM networks, enabling it to identify anomalies in network behavior 

that might indicate potential security threats.  

In [18] authors introduced RawPower, a DL architecture designed to analyze raw bytestream data 

for network anomaly detection. This approach eliminates the need for extensive feature engineering by 

directly processing raw traffic measurements. The experimental results demonstrate that RawPower 

achieves exceptional performance, surpassing traditional anomaly detection systems in terms of detec-

tion accuracy, robustness, and scalability. Specifically, it excels in scenarios involving high-speed net-

works, where traditional methods struggle to keep up with the sheer volume and diversity of data. 

The studies [19, 20] investigate the application of deep learning techniques for identifying various 

types of malicious network activities, such as malware communication. By utilizing CNNs to analyze 

packet-level features, the method achieves superior performance in detecting previously unseen threats. 

The authors compare the results with conventional techniques and highlight significant improvements 

in precision and recall metrics. 

The authors of [15] provides a thorough review of how deep learning techniques are applied to 

various domains of network security, highlighting their significant advantages over traditional, rule-

based systems. The authors analyze several deep learning architectures, including CNNs and RNNs, 

demonstrating their ability to automatically extract and learn meaningful patterns from raw network data 

without the need for extensive manual feature engineering. The survey emphasizes the limitations of 

rule-based systems, which rely on predefined rules or signatures, making them ineffective against zero-

day attacks and adaptive threats. In contrast, deep learning models are dynamic and capable of general-

izing to unseen attack scenarios. By analyzing both known and novel attack patterns, these methods 

significantly enhance detection rates and reduce false positives, which are common drawbacks of con-

ventional systems. 

The article [21] highlights the transformative role of deep learning in securing 5G networks. The 

authors discuss how the high complexity and dynamic nature of 5G architectures, including virtualiza-

tion, software-defined networking (SDN), and network slicing, demand advanced security mechanisms 

capable of real-time threat detection and mitigation. The study concludes that integrating deep learning 

into 5G security frameworks significantly enhances the adaptability, precision, and scalability of net-

work defenses, making them more resilient to evolving threats. However, it also underscores the need 

for addressing challenges such as computational overhead and the interpretability of deep learning mod-

els to ensure their effective deployment in real-world 5G applications. 

3. Traffic Optimization with AI 

Efficient traffic management is critical in maintaining network performance, particularly as the 

number of connected devices and the amount of data traffic continue to grow. AI's ability to predict 

traffic patterns and optimize routing decisions in real-time has significantly improved the efficiency of 

networks. AI-based systems analyze historical and real-time data to dynamically adjust traffic routes 

and manage bandwidth, thereby reducing congestion and packet loss. 
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3.1. Predictive Traffic Routing 

AI can predict network traffic fluctuations by analyzing historical data and recognizing patterns 

that suggest future behavior. By leveraging ML models, networks can proactively re-route data to avoid 

congestion before it occurs, improving Quality of Service (QoS) for end-users. QoS refers to the ability 

of a network to provide predictable performance levels, typically measured by parameters such as band-

width, latency and packet loss. It ensures that network resources are allocated efficiently to maintain the 

reliability and quality of specific applications or services, such as video streaming or VoIP. Predictive 

routing is particularly beneficial in large-scale networks, such as data centers or cloud infrastructures, 

where traffic load balancing is essential for maintaining optimal performance. 

The study presented in [30] focus on predicting the network traffic by using the different prediction 

regression models such as K-Nearest Neighbors, Random Forest, Gradient Boosting and DT with dif-

ferent sub-parameters. Using real-world network traffic data, the authors train and test the models to 

predict key traffic parameters, such as bandwidth demand and packet flow rates. The results demonstrate 

that Gradient Boosting outperforms the other algorithms in terms of accuracy and error metrics, such as 

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 

One notable study [8] presents a framework for traffic flow classification based on deep learning 

models. The authors train deep neural networks (DNNs) on real-world network traffic data to predict 

characteristics such as flow throughput and duration. Their approach moves beyond binary classifica-

tions like "mice" (small) and "elephant" (large) flows [23], opting instead for a multi-class quantization 

strategy. This methodology classifies flows into a range of categories based on their characteristics (flow 

throughput, duration, or packet interarrival times), rather than relying on rigid binary distinctions. The 

proposed system is intended to enhance network traffic management by predicting flow behaviors, ulti-

mately improving routing decisions in real time. 

The authors of [9, 31] explored the application of AI in predicting network traffic patterns to en-

hance routing efficiency in smart networks. It reviews various AI methodologies, including machine 

learning techniques, and discusses their roles in optimizing resource allocation and reducing latency. 

Techniques such as RNNs and LSTM networks are discussed for their ability to analyze temporal traffic 

data and accurately forecast future traffic demands. These predictions enable dynamic adjustments to 

routing protocols, reducing congestion and enhancing QoS across diverse network environments, in-

cluding 5G, IoT, and edge computing. Despite the advancements, the article identifies several challenges 

associated with AI integration in network traffic management, such as scalability in large-scale net-

works, maintaining prediction accuracy in highly dynamic environments, and computational overhead. 

The authors suggest that future research should focus on lightweight AI models, federated learning to 

address data privacy concerns, and explainable AI (XAI) to improve the interpretability and trustwor-

thiness of predictive systems. 

3.2. Reinforcement Learning for Dynamic Traffic Management 

Reinforcement learning, a type of machine learning where agents learn by interacting with their 

environment, has been applied to dynamic traffic management. RL agents learn optimal routing strate-

gies through trial and error, adjusting decisions based on rewards, such as reduced latency or higher 

throughput. This approach allows networks to adapt in real-time, adjusting to changing conditions with-

out the need for human intervention. 

The article [10] explores the application of reinforcement learning for adaptive routing in networks 

subject to dynamic changes. The authors present an RL framework that dynamically learns optimal 

routing policies by interacting with the network environment, thereby facilitating efficient traffic man-

agement and minimizing delays, even under unpredictable traffic fluctuations and varying network to-

pologies. The study highlights the potential of RL to enhance routing performance in scenarios where 

traditional algorithms may struggle due to variability in network conditions. 

Abrol in [22] presents a framework leveraging deep reinforcement learning (DRL) to optimize net-

work traffic management dynamically. The authors propose a model that integrates a deep graph con-

volutional neural network with a reinforcement learning agent to predict and adapt to real-time traffic 

demands. This approach is particularly suited for next-generation networks, which face challenges such 

as high data volumes, dynamic topologies, and diverse service requirements. By modeling the network 

as a graph, the DRL agent learns optimal routing policies by interacting with the network environment 

and receiving feedback through reward signals. These signals are designed to reflect key performance 
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metrics, such as throughput, latency, and packet loss. Over time, the model identifies patterns in traffic 

behavior and dynamically adjusts routing decisions to prevent congestion and maximize resource utili-

zation. The approach minimizes packet delays and reduces congestion, leading to improved QoS for 

users and applications. 

Q-Learning [24] (QL) uses unsupervised RL to determine optimal behaviour to maximise perfor-

mance when interacting with its environment. The method has also found its way into network traffic 

management and optimization in SDN. The authors of [25] addressed network congestion in SDN by 

reselecting flow paths and changing flow table using predefined threshold. The researchers in [26] in-

troduced fairness function in SDN for load-balancing in peak traffic conditions. Harewood-Gill [27] 

proposed three Q-routing algorithms [28] with distinct performance metrics to enhance traffic manage-

ment in SDN environments and conducted a comparative analysis of their effectiveness against the K-

Shortest Path algorithm. A more detailed description of these articles, along with additional examples 

of QL applications in SDN, is provided by the authors in [29]. 

4. AI in Network Management 

AI has also revolutionized network management by automating routine tasks such as configuration 

management, fault detection, and network monitoring. AI-driven network management systems can 

identify and resolve issues autonomously, reducing human workload and minimizing downtime. 

In traditional networks, configuration management is a labor-intensive process prone to human 

error. AI tools automate the configuration process, ensuring consistency and reducing the risk of mis-

configurations. By analyzing network requirements, AI systems can automatically apply optimal set-

tings and adjust them as network demands evolve. 

Moreover, AI systems excel at detecting anomalies in network performance, which can be indica-

tors of hardware failure, security breaches, or performance degradation. By using ML models, these 

systems can predict failures before they occur and take preventive action, such as rerouting traffic or 

initiating backup systems. Some AI-driven networks even exhibit self-healing capabilities, where the 

system automatically corrects issues without human intervention. Examples of the use of AI solutions 

in network management are described in [8, 9, 11, 32, 39]. 

The article [33] discusses the integration of machine learning techniques into cognitive network 

management systems to enhance decision-making processes and automate network operations. The au-

thors emphasize the segmentation of network management into distinct areas - Fault, Configuration, 

Accounting, Performance, and Security (FCAPS) - and the assignment of specific ML algorithms to 

address challenges in each domain. Furthermore, they underscore that developing an integrated network 

management system is a highly complex yet indispensable task, particularly in light of the rapid expan-

sion of computer networks in recent years. 

Li in [34] explores the transformative role of AI and ML in enhancing the management of data 

center networks. It provides a detailed analysis of how ML techniques are being employed to address 

the growing complexity of modern data centers by enabling adaptive, automated, and efficient network 

management solutions. A notable contribution of the survey is the introduction of a quality assessment 

criterion called REBEL-3S, designed to impartially evaluate the strengths and weaknesses of the pro-

posed research approaches. 

Kadiyala in [38] examines the groundbreaking potential of AI in network automation, emphasizing 

its ability to predict and prevent network issues, optimize resources, and enable self-healing capabilities. 

It presents real-world case studies demonstrating AI's effectiveness in enhancing network reliability and 

reducing downtime.  

An existing technological solution utilizing AI for network infrastructure management is Cisco AI 

Network Analytics3. This application is designed to enhance network management by leveraging AI and 

ML to provide proactive insights and automated solutions [35]. The platform collects and analyzes vast 

amounts of telemetry data from network devices, enabling it to identify anomalies, predict potential 

performance issues, and optimize network configurations in real time. A key advantage of Cisco AI 

Network Analytics is its ability to automate routine tasks, such as identifying misconfigurations or real-

locating bandwidth, reducing the need for manual intervention and minimizing operational costs. 

                                                      

3 https://www.cisco.com/c/en/us/td/docs/cloud-systems-management/network-automation-and-management/dna-center-assu-

rance/2-3-7/b_cisco_dna_assurance_2_3_7_ug/b_cisco_dna_assurance_2_3_6_ug_chapter_010.pdf 
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Similarly, Juniper Networks' AI-driven network management solution, Marvis, employs ML to 

proactively predict network issues and deliver actionable insights [36]. By analyzing data from various 

sources - including network devices, applications, and user behavior - Marvis identifies patterns and 

anomalies with high accuracy. In a customer deployment, Marvis successfully predicted 90% of network 

issues, reducing the mean time to resolution (MTTR) by 70% and increasing network uptime by 25% 

[37], showcasing its impact on operational efficiency and reliability. 

5. Challenges and Future Directions 

Despite the numerous advantages of integrating AI into computer networks, there are several chal-

lenges that must be addressed. One key issue is the difficulty of integrating AI into existing legacy 

network infrastructure, which often lacks the computational power or flexibility required for AI systems. 

Additionally, the deployment of AI in critical networks raises ethical concerns, including questions of 

accountability, transparency, and bias in decision-making processes. 

5.1. Ethical and Accountability Concerns  

As AI systems become more autonomous, determining accountability in the event of network fail-

ures or security breaches becomes increasingly complex. The opaque nature of some AI algorithms, 

particularly deep learning models or decision trees, makes it difficult to understand how decisions are 

made. This is why many AI systems operate as "black boxes", making it difficult for users and stake-

holders to understand how decisions are made. This lack of transparency raises accountability issues, 

particularly in scenarios where AI decisions impact user safety or privacy. Establishing clear accounta-

bility frameworks is essential; organizations must define who is responsible for AI-driven decisions, 

whether it be the developers, the companies that deploy these systems, or designated administrators. 

This clarity can help foster trust and facilitate ethical governance of AI technologies. 

The findings reported in [40] highlight practical issues of developing and operating ML-based so-

lutions in real networks. The authors discuss concerns related to data quality and availability, emphasiz-

ing that the effectiveness of AI systems heavily relies on large, high-quality datasets, which are often 

difficult to obtain or maintain due to privacy regulations and dynamic network environments. It is worth 

mentioning that gathering sufficient data from diverse network environments is often hindered by logis-

tical limitations, such as incompatible data formats, the high cost of data acquisition, and varying net-

work configurations. One more significant challenge lies in data labelling. Supervised learning algo-

rithms, which are commonly used in network management tasks like traffic classification and anomaly 

detection, require labeled datasets for training. Labeling network data is both time-consuming and re-

source-intensive, often requiring expert knowledge to correctly identify patterns or categorize flows. 

This bottleneck can slow down the development cycle of AI-driven solutions and limit the scope of their 

applicability. 

Another major issue is algorithmic bias, which can emerge from the data sets used to train AI 

systems. If these data sets reflect historical biases or imbalances, the resulting AI algorithms may rein-

force or exacerbate these biases in decision-making processes. For example, an AI system employed for 

network traffic management might unintentionally prioritize data flows from certain applications or user 

groups, leading to unequal access to bandwidth and resources. Addressing this concern requires ongoing 

scrutiny of training data and the implementation of measures that ensure fairness and inclusivity in AI 

applications, promoting equitable service distribution across all users. 

Furthermore, the ethical implications of data privacy in computer networks cannot be overlooked. 

AI systems often require vast amounts of network traffic data to function effectively, raising concerns 

about how this data is collected, stored, and used. Users may be unaware of the extent to which their 

online activities are being monitored and analyzed, leading to potential violations of privacy rights. 

Organizations must prioritize ethical data management practices, ensuring that users are informed about 

data usage and that consent is obtained for data collection. Establishing regulatory frameworks that 

protect user privacy while allowing for innovation in AI technologies will be a crucial step forward in 

fostering trust and accountability within network systems. 
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5.2. The Future of AI-Driven Networks 

The future of AI-driven networks is set to revolutionize the way we manage and interact with digital 

infrastructures. One of the most promising advancements lies in the development of self-optimizing 

networks. These networks will leverage AI algorithms to analyze real-time data, enabling them to dy-

namically adjust their performance based on current conditions. This capability could significantly en-

hance efficiency, as networks become adept at reallocating resources and bandwidth in response to 

changing demands. As a result, users can expect faster, more reliable connections, improving overall 

user experiences across various applications. 

Moreover, AI-driven networks are likely to play a pivotal role in enhancing security measures. The 

integration of AI in cybersecurity can enable proactive threat detection and response, as systems learn 

to identify and mitigate potential vulnerabilities before they can be exploited. By analyzing patterns in 

network traffic, AI can differentiate between legitimate user behavior and suspicious activities, signifi-

cantly reducing the risk of cyberattacks. However, this increased reliance on AI also necessitates the 

development of robust safeguards to ensure that these systems themselves do not become targets for 

manipulation or exploitation. 

When discussing the future of computer networks, it is impossible to overlook the transformative 

role of generative AI. This technology is set to revolutionize network optimization, security, and auto-

mation through its innovative applications. One such use case is synthetic data generation, where models 

like Generative Adversarial Networks (GANs) [41] and diffusion models create realistic network traffic 

patterns. These synthetic datasets address the challenges of limited or biased real-world data, enhancing 

the robustness and adaptability of AI systems in managing network operations. 

In the area of network security, generative AI has proven its utility in simulating complex cyberat-

tacks, such as DDoS or phishing scenarios [42]. By proactively testing security systems against these 

simulated threats, networks can better anticipate and counter emerging vulnerabilities. However, this 

dual-use potential also introduces risks, as attackers might exploit generative AI to craft more sophisti-

cated and hard-to-detect malicious traffic, necessitating effective protections and ethical guidelines. 

6. Conclusion 

The impact of artificial intelligence on computer networks is profound and multifaceted, offering 

both significant benefits and challenges. AI technologies have the potential to revolutionize network 

management, enhancing efficiency, reliability, and security. Through the use of advanced algorithms, 

networks can achieve greater self-optimization and self-healing capabilities, leading to improved per-

formance and reduced downtime. This transformation is particularly crucial in an era where demand for 

bandwidth and responsiveness continues to grow, necessitating innovative solutions to manage complex 

network environments. Table 1 provides a summary of artificial intelligence applications and their trans-

formative impact on key areas of computer networks. 

Table 1. AI Applications and Their Impact on Key Network Areas 

Computer Network Area Traditional Challenges AI Approaches Impact of AI 

Traffic Management 
Network congestion, ineffi-

cient routing 

Predictive analytics, rein-

forcement learning 

Improved routing, reduced la-

tency, dynamic traffic optimi-

zation 

Network Security 

Threat detection delays, zero-

day attack detection, advanced 

persistent threats 

Anomaly detection, genera-

tive AI, ML classifiers, neural 

networks 

Faster threat detection, adap-

tive defense mechanisms, re-

duced false positives, effec-

tive prediction of APT and 

zero-day attacks 

Resource Allocation 
Static resource distribution, 

underutilization 

AI-based optimization mod-

els, deep learning 

Efficient bandwidth manage-

ment, adaptive resource distri-

bution 

Fault Detection 

Manual monitoring, delayed 

detection of hardware or soft-

ware failures, delayed trouble-

shooting 

Predictive maintenance, neu-

ral networks 

Early failure detection, mini-

mized downtime, automated 

troubleshooting 

Quality of Service 
Packet loss, inconsistent ser-

vice quality 

AI-driven traffic prioritiza-

tion, reinforcement learning 

Enhanced user experience, op-

timized service delivery 
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Network Design and Planning 

Complex manual configura-

tions, Complexity in multi-

cloud or MANET scenarios 

Generative models (e.g., 

GANs), optimization tech-

niques 

Automated network topology 

design, scalability, reduced 

human error 

 

However, the integration of AI into computer networks is not without its drawbacks. Ethical consid-

erations, particularly around data privacy and algorithmic bias, pose serious challenges that must be 

addressed to foster trust among users and stakeholders. As AI systems become increasingly autonomous 

in their decision-making processes, ensuring accountability becomes critical. Organizations must im-

plement transparent practices and ethical guidelines that govern AI usage, ensuring that user data is 

handled responsibly and equitably. A groundbreaking step toward the responsible and ethical develop-

ment of this technology is the EU Artificial Intelligence Act4, which represents the world's first compre-

hensive legal regulation for artificial intelligence systems and models. 

Looking ahead, the future of AI-driven networks necessitates a collaborative approach that integrates 

the insights of technologists, ethicists, and policymakers. This interdisciplinary cooperation is crucial 

for establishing standards that promote technological advancement while safeguarding users' rights and 

classified information. By balancing innovation with ethical considerations, the full potential of artificial 

intelligence can be harnessed for applications in computer networks, ensuring that these technologies 

enhance their integrity, accessibility, and security.  
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