
ZESZYTY NAUKOWE POLITECHNIKI RZESZOWSKIEJ 301, Elektrotechnika 38

RUTJEE, z. 38 (1-2/2020), styczeń-czerwiec 2020, s. 81-95

Maciej PENAR1

PERFORMANCE ANALYSIS
OF WRITE OPERATIONS IN IDENTITY
AND UUID ORDERED TABLES

Design of the database includes the decision about the physical storage. This is of-
ten overlooked as 1) this cannot be expressed in standard SQL and in result each
Database Systems have their own way to specify the physical storage and 2) the
decision is often made implicitly. This is dangerous situation as many of the data-
bases use B+ trees as table implementation which stores the data physically sorted
by some ordering attribute. The choice of the ordering attribute largely affects read
and write operations. Commonly, IDENTITY/AUTO_INCREMENT constraint are
being chosen as ordering attributes, due to their easy usage and monotonic nature.
In some cases ordering tables by the attributes whose values are drawn from uni-
form distribution leads to better performance in terms of Transactions-Per-Second.
Such cases includes situation when data does fit entirely in-memory or when we
can limit the set of physical pages being accessed. In the end, however, We cannot
entirely say that either monotonic or random attributes are superior. Both have their
pros and cons. In this article We present (1) short description of the data structures
in contemporary Database Systems, (2) the advantages and the disadvantages of the
two common types which are used as the clustering attributes: GUID and
IDENTITY, (3) performance analysis of write operation which compare both data
types using B+ tree as primary storage and (4) evaluate the efficiency of these bulk
load operation using heap files and B+ trees.

Keywords: database design, logical model, heap files, B + tree, insert performance

1. Introduction

Few decisions should be made while designing the logical model of the da-
tabase (DB). Firstly, DB designer should try to fulfil functional requirements,
usually by creating tables with the appropriate data types. Secondly, constraints
are put on the created schema as a result of normalization (i.e. FOREIGN KEY

1 Corresponding author: Maciej Penar, Rzeszów University of Technology, The Faculty of Elec-
trical and Computer Engineering, Aleja Powstańców Warszawy 12, 35-959 Rzeszów;
mpenar@kia.prz.edu.pl, https://orcid.org/0000-0002-4481-807X.

82 M. Penar

constraints) or by incorporating some business logic inside the database project
(i.e. CHECK/UNIQUE constraints) [1]. Finally a good designer should consider
context of the usage - how data is written, updated and read. At this stage indexes
and partitioning schemes are created and the physical structure should be chosen
– one of the most popular choices is the B + tree as physical implementation of
table.

In this article we analyse the performance of ordered and unordered attrib-
utes as clustering key in B + tree. We use two most popular data types:
IDENTITY and GUIDv4 [2]. Such analysis are regularly carried out on unoffi-
cial blogs and are subject of continuous discussion – usually ending up in over-
whelming criticism GUID [3] [4] as they underperform in certain conditions.
However, few articles happens to state otherwise [5] [6]. Unfortunately existing
articles do not use scientific methods to evaluate performance. Also, it is common
that DBs are compared to NoSQL solutions [7] [8] without stating which structure
has been used as a storage and how the data was sorted (if it was). In this article
we will consider the functional advantages and disadvantages of these types and
will present the results of our experiment which assesses the effectiveness.

The article is organized as follows: section 2 provides a brief description of
how modern database writes the data. Section 3 describes the advantages and
disadvantages of GUID and IDENTITY. Section 4 presents the results of pro-
posed experiments. Section 5 summarizes the article and discusses further re-
search.

2. Storing the data

Typically while executing CREATE TABLE command, DB decides which
structure should be used to as a table. DB organizes the data and metadata in
blocks of bytes called pages. In this section we will give a short description of
the data structures commonly used in DBs and we'll discuss the activities that
Database Management System (DBMS) performs during INSERT command. We
will finish the section with comment about transaction log. Two structures, which
are commonly used in DBMS are heap files and a B + trees [9].

2.1. Heap files
Heap files (also known as Sequential files) are DBMS equivalent of linked

lists. Pages of heap files are linked together using pointer which are stored in a
special sector of the page called header. This structure has a relatively low cost
of INSERT command as it only requires appending it in the free space of the last
page (see fig. 1). However, if the heap file is not indexed each SELECT statement
requires scanning all blocks. This data structure is often used in Data Warehouses
as it provides:

Performance analysis of write operations in identity... 83

• Support for bulk operations as tables can be copied page-by-page. After-
wards the pointers are updated.

• Daily update of the reports may require scanning whole dataset. There-
fore, the default method of accesing data in heap files are not drawback.

In order to index such heap files, one need a method that is used to identify
the record regardless of the physical location on disk. DB must implement method
to determine the logical ID of the record within the file. Usually component exists
in DB which provides such identifier and in some cases it can be a bottleneck
when many concurrent INSERTS are performed.

Fig. 1. Allocating record in heap file with 3 pages

2.2. B+ tree
Also known as Clustered Index [10]. This structure requires an order ≤�

over some attribute A (or a list of attributes). In B + tree there are two kind of
pages:

• internal nodes – which contains values of attributes � and pointers to (1)
either other internal nodes on the lower level of the tree (2) or to the
leaves which contains raw data. Each node � contains � pointers � and
� − 1 keys 	 ∈ �. In each node, any pointer �� 	leads to node ′ so that:
����� ≔ ��	 ∈ 	�|		��� < �. � ≤ 	�}, for 1 < � < �. In case when � =
1 or � = � left and right side of inequality are omitted respectively. This
is shown in the figure 2.

84 M. Penar

• leaves (data pages) – which stores the raw data. Leaves layer is connected
with pointers in a similar fashion as in the heap files. This feature and the
fact that data is ordered by ≤��…�� enables effective range queries given
the value of �.

SELECT statements which have different attributes than � in the WHERE
claus requires a scan on the leaves. Also the INSERT to a B + tree is more com-
plex than INSERT to the heap file. In B+ trees it requires finding the appropriate
block so the order ≤��…�� is preserved. If the leaf cannot hold any more data, it
may require 1) splitting the page in half and 2) updating the internal node level
above (if required). Example of B + tree is in the figure 3.

Figure 2. Internal node of B+ tree

Figure 3. Example of B+ tree(here the data pages contains only information about ranges of the
values)

Performance analysis of write operations in identity... 85

B+ tree implementations in DBMS have subtle details which influences the
performance. Often the data in leaves is unsorted to minimize the requirement to
reorganize the leaves after each INSERT. The order of the data is established
based on the special offset array – which contains the offsets of the rows in the
data page.

2.3 Additional comment
To minimize the expensive disk IO, DB store data in main memory – buffer

pools. The size of the buffer pool is usually configurable. Whether or not a block
of data is in the buffer is important not only for read but also for the write opera-
tions. In particular this is crucial for B + trees because the INSERT transaction
must find the leaf where the new record should be put – one may think about this
as implicit SELECT.

The author want to note that Durability of the transactions is achieved by
logging the transactions. Write-Ahead logging (WAL) [11] is commonly used as
logging scheme. In WAL transaction are firstly written to the log, then the trans-
action is executed. DB are properly utilized only when the transaction log be-
comes the bottleneck – therefore observing waits on transaction log can be indi-
cator if some DB operations can be optimized.

3. Attributes

In this section, we describe two data types which are commonly used as or-
dering attributes of B + trees. We provide functional advantages and disad-
vantages of both types of data.

3.1. IDENTITY/SEQUENCE
This type is implemented as a 4-byte or 8-byte integer. Main idea is to pro-

vide the way to generate monotonic values. This means that DB allocates special
counter for each column of this data type. It is incremented whenever the counter
is accessed.

Extension of this concept is known as Database Sequences which are special
objects which enable the precise control over the generated values. Often, when
DB provides the Sequences, they wrap the IDENTITY. Also, other methods exist
to generate the sequential values i.e. SEQUENTIALID (which are
GUIDv1/GUIDv2) or timestamp.

When monotonic value is used, then the “last page problem” occurs [1] – a
large number of concurrent INSERT transactions may require accessing and
modifying the last page (see Fig. 4). Which leads to lock contention there, as
every transaction require exclusive lock on the page to perform actual transaction.
Due to this, one can observe a significant drop of the database throughput. On the
other hand, the pages where the payload of the INSERT should be put can be

86 M. Penar

easily predicted – which results in minimal number of IO operations. Addition-
ally, such pages are rarely deleted from the buffer pools.

Figure 4. "Last Page Problem" when using IDENTITY. The path that is read by every transaction
is highlighted

3.2. GUID
Globally Unique Identifier (GUID) is 16 byte integer. There are few sub-

types of GUID which differs in way of generating the values. In this section we
consider the GUIDv4 which values are drawn from the uniform distribution.

When using the GUID, "The Problem of the last page" disappears as random
page is chosen for modification, thus reducing the probability of lock contention.
As the values are random – in a distributed environment the clients themselves
can generate them which eases the usage in the distributed environment. Unfor-
tunately, when synchronizing the multiple datasets, some policy may be required
when the duplicates are found.

As long as the whole dataset can be stored in main memory, the random
types can be successfully used as ordering attributes. However, when the size of
the table exceeds the size of the buffer pool, it is likely that the page that is af-
fected by the transaction is not present in the cache. This means the additional
disk IO which generally requires more time than waiting on a lock as stated in
"The Last Page Problem". Table 1 presents a functional comparison of the data
types.

Performance analysis of write operations in identity... 87

Table 1. Functional comparison of IDENTITY and GUI

 IDENTITY GUIDv4

Pros

• Last page is often in the cache,
which reduces disk IO

• Often, it is significantly smaller
than GUID

• Capabilities are extended with
SEQUENCE

• Identifies entity in distributed DBs
• Prevents the lock contention at the

last page

Cons

• Generated by DB
• Does not identify entities in dis-

tributed DBs
• Introduces “Last Page Problem”
• Does not prevent fragmentation

of the pages
• In distributed DBs the two-way

synchronization requires synchronous
flow

• Drops the throughput of the DB
when the dataset does not fit in the
memory

• Often, it is significantly larger than
IDENTITY

• In distributed DBs the synchroniza-
tion may require policy of identifying du-
plicate entries

4. Evaluation

The experiments were carried out on two nodes: the first contains DB, the
second simulated clients performing concurrent transactions. DB on which the
test was carried out was Microsoft SQL Server 2014 – Standard Edition installed
on the Windows 10 Pro 64-bit. DB node had Intel (R) Core (TM) i7-6700 CPU
@ 3.40 GHz, processor with 8 GB RAM and two hard drives. In order to examine
the write performance to tables with random and monotonic clustering the DB
was configured as in Table 2. The Disks were checked with winsat tool – the
results are presented in Table 3.

Table 2. DB configuration parameters

Parameter
Max.

log size
Initial

log size
Max.

DB size
Initial

DB size

Buffer
Pool
size

Page
size

DB
threads

Value 10 GB 2 GB 20 GB 2 GB 4 GB 8 kB 4

Table 3. Referential measurement of disk performance using winsat

Disk/Type
Rand
16.0
Read

Seq 64.0
Read

Seq
64.0

Write

Avg. Seq
Read

Max. la-
tency

Avg. Rand
Read

Disk 1
SSD

164.52
MB/s

447.71
MB/s

357.31
MB/s

0.169 ms
64.466

ms
0.186 ms

Disk 2
HDD

1.47
MB/s

109.67
MB/s

114.47
MB/s

5.334 ms
74.404

ms
12.182 ms

88 M. Penar

The following experiments were proposed to evaluate the performance:
• Experiment 1 – INSERT INTO performance evaluation when multiple

several parallel connections are opened, assuming that the volume of data is in
the buffer pool.

• Experiment 2 – multi-iteration INSERT INTO performance evaluation
when multiple several parallel connections are opened. After each iteration, the
data is preserved in DB. Time is measured for each iteration. At some iteration
the data volume will exceed the capacity of the buffer.

• Experiment 3 - in which we evaluate the effectiveness of the batch load
in different structures.

Below in the dedicated sections will be thoroughly discussed and the results
of experiments.

4.1 Experiment 1
The first experiment examined the performance of write operations when

many concurrent connections were executing the stored procedure. Pseudocode
for the procedure is:

FOR i FROM 0 TO X

BEGIN TRANSACTION
INSERT INTO TABLE DEFAULT VALUES

COMMIT
END FOR

Its workload simulates OLTP environment – where transactions have
“point”/”by-id” flavour (insert, delete, update or read of a single row). In
the experiment we defined the following variables:

• Number of parallel clients connected to the database
 ≔ �1, 10, 25, 50, 75, 100}

• Number of rows inserted into the table – among all the connections
 & ≔ �0,5, 1, 2, 4} ∗ 10)

• Width of the row (in bytes)
* ≔ �50, 104, 254, 504}

All tests were repeated 5 times and mean time and standard deviation was

calculated (in seconds) – measurements are presented in table 4.
In the setup when a single connection was performing inserts, we cannot

indicate which solution is better – mean difference is relatively small even for the
largest volume (* = 504, & = 4 ∗ 10)), the relative difference equals to 8% in
favour of the IDENTITY.

Performance analysis of write operations in identity... 89

Table 4. Comparison of mean time (in seconds) of INSERT operation on disk 1 for experiment 1.
Standard deviation is shown in square brackets. Grey color indicates lower execution time

Inser-
ted

rows
[R]

GUID IDENTITY

Row width[W] Row width[W]

50 104 254 504 50 104 254 504

Connection: 1

500000
36 [1.1] 35.3 [0.6] 38.3 [1.9] 36.8 [1.2] 34.5 [0.4] 36.4 [0.6] 38.9 [0.8] 35.9 [0.9]

100000
0

69.1 [1.3] 72.8 [1.7] 76.5 [2.5] 73.9 [1.4] 69.9 [0.5] 71.9 [1.7] 77.6 [3.4] 71.2 [1.7]

200000
0

138.6
[1.2]

149.3
[3.5]

147.2
[5.5]

150.5
[2.4]

140.3
[1.6]

147.3 [6.3]
144.9
[3.3]

142.4
[3.5]

400000
0

290.8
[6.7]

293.6
[3.6]

293.8
[5.2]

312.7
[5.9]

288.7
[8.3]

291.3 [7.7]
286.7
[6.5]

288.1
[9.8]

 Connections: 10

500000
10.5 [0.3] 10.8 [0.4] 12.2 [1.7] 12.9 [1] 12.4 [0.3] 12.7 [0.5] 13.2 [0.8] 14.5 [1.4]

100000
0

21.5 [1.2] 21.8 [1.3]
37.5

[30.4]
26.9 [1.5] 24.9 [0.4] 24.9 [0.4] 26.5 [0.8] 28.4 [0.6]

200000
0

41.2 [1.5] 44.2 [2.2] 47.1 [1.4] 53.1 [1.7] 49.5 [0.8] 51.1 [1] 52.5 [1] 57.1 [2.2]

400000
0

84.1 [3.4] 91.1 [4.2] 96.4 [1.9] 117 [4.5] 99.7 [1.3] 101.5 [2.8]
105.3
[1.5]

114.1
[3.4]

 Connections: 25

500000
6.3 [0.5] 6.5 [0.3] 7.7 [0.7] 8.7 [1] 9.3 [1] 9.8 [0.5] 11.1 [1.1] 13.2 [0.9]

100000
0

12.9 [0.5] 13 [0.5] 15.3 [0.9] 18.2 [0.4] 18 [0.6] 19.2 [0.3] 21.3 [1.4] 25.8 [0.8]

200000
0

33 [17.8] 26.8 [1.2] 30.4 [1.7] 37 [1.5] 36.2 [1.1] 37.8 [1.3] 42.6 [1.1] 50.9 [1.9]

400000
0

50.4 [1.4] 53.2 [2] 64.3 [2.2] 83.1 [4.7] 70.8 [1.6] 74.9 [1.1] 85.2 [1]
103.2
[2.7]

 Connections: 50

500000
5.2 [0.3] 5.6 [0.4] 6.7 [1] 7.3 [1.3] 9.3 [0.3] 10.2 [0.4] 11.8 [0.9] 13.7 [1]

100000
0

10.2 [0.2] 10.4 [0.6] 12.9 [0.9] 15.5 [1.2] 18.2 [0.4] 20 [0.4] 23.5 [1.1] 28.1 [0.9]

200000
0

20.3 [0.4] 21.2 [0.2] 25.3 [1.3] 32 [2.7] 36.7 [1.1] 40.1 [0.5] 47.2 [1.2] 55.8 [1.2]

400000
0

41.5 [0.9] 45.1 [3.7] 51.2 [2.7] 71.5 [4.1] 73 [0.8] 79.8 [0.7] 93.3 [2.2]
113.9
[2.5]

 Connections: 75

500000

5.2 [0.6] 5 [0.3]
14.6

[18.4]
7 [1] 10.4 [0.4] 11.3 [0.5] 13.1 [1.2] 14.9 [0.9]

100000
0

10 [0.7] 9.8 [0.5] 11.7 [1] 14.5 [1.1] 20.1 [0.3] 22.2 [0.3] 24.9 [1.1] 29.1 [0.5]

200000
0

19.1 [0.7] 19.7 [0.6] 23.3 [0.6] 31.8 [1] 40.3 [0.4] 52 [17.5] 49.9 [0.8] 57.7 [1.8]

400000
0

37.7 [2.2] 41.3 [1.2] 48.2 [1.7] 68.9 [3] 80.1 [0.8]
104.3
[23.1]

99.7 [1.5]
115.9
[2.3]

 Connections: 100

500000

5.3 [1] 5 [0.4] 5.6 [0.6] 7.6 [2] 11.9 [0.3] 12.4 [0.4] 14.4 [0.7] 15.5 [1]

100000
0

9.1 [0.4] 9.8 [1.1] 11.7 [0.9] 13.5 [0.4] 23.6 [0.7] 24.2 [0.5] 26.3 [1] 31.2 [1.8]

200000
0

18.6 [0.9] 19.8 [0.5] 22.9 [1.3] 29.2 [2.2] 46.1 [0.6] 50.2 [4.1] 53.6 [1.4] 61.3 [2.2]

400000
0

36.5 [0.7] 40.8 [3.3] 46.7 [1.2] 66.3 [2.6] 91.4 [0.6] 96.8 [1.1]
105.9
[1.2]

121.6
[4.4]

90 M. Penar

The situation changes when records are inserted in parallel. In each case this
leads to significant reduction of time (37% of the base time for GUID, 39% for
IDENTITY). When using GUID and 10 connections in every but two cases we
observe faster INSERT with relative difference at level < 10%.

With 25 and more connections difference between the GUID and
IDENTITY significantly differs. In case of smallest volume (* = 50, & = 0,5 ∗
10)) GUID organized table finishes the task 1.48 to 2.24 times faster than
IDENTITY. Similarly, the largest volume of data (* = 504, & = 4 ∗ 10)) can
be inserted 1.24 to 1.83 times faster. The relative acceleration using 100 connec-
tions is presented in figure 5.

"Last Page Problem" occurs more often when the row size is small because
the greater number of the transactions is trying to write to the same page. This
leads to the best relative performance of GUID organized table when (* = 50,
& = 4 ∗ 10)) – one can observe 2.5 times speed up. It should be noted that
IDENTITY will not gain performance boost when more than 25 connections are
used – more number of connections leads to performance drop.

Figure 5: Relative comparison of mean Times using 100 parallel connections

At the end of this subsection, we just note the fact that repeating this exper-

iment on second disk gave similar results.

Performance analysis of write operations in identity... 91

4.2. Experiment 2

The second experiment was derived from the experiment 1. Its idea was to
load the data to DB within several iterations and after each, the records were pre-
served. The number of records in each iteration was fixed. The test was describe
with the following parameters:

• Number of parallel clients connected to the database: + = 100
• Number of rows inserted into the table – among all the connections: , =

4 ∗ 10)
• Width of the row (in bytes): - = 254
• Number of iterations were set to 6. After last iteration, the database had

24kk record – which was roughly 5.68 GB of data.
Test was repeated 4 times on disk 1 (SSD). The time was measured in sec-

onds.

Table 5: Comparison of mean and cumulated execution time of stored procedure (by iteration)

Method Iteration Time[s] Cumulated time [s]

guid

1 60,55 60,55

2 58,99 119,54

3 87,38 206,92

4 231,65 438,57

5 371,84 810,41

6 434,97 1245,38

numeric

1 114,89 114,89

2 108,2 223,09

3 108,72 331,81

4 108,77 440,58

5 109,54 550,12

6 108,84 658,96

The results of this test highlights that when data in a table does not fit in the

buffer pool, IDENTITY’s predictible storage page becomes a positive property.
In the first three iterations (about 3 GB of raw data, with a buffer pool of 4 GB)
using GUID as clustering attribute is beneficial – as observed in the first
experiment.Unfortunately, when DB cannot find pages in the buffer, it has to
perform the expensive disk IO requests which causes a steep increase in the
execution time. This can be seen in figure 5. When using IDENTITY as clustering
key the storing page does not disappears from the buffer pool (as a result of
“cache thrashing”), thus making the INSERT operation work in the constant time,
regardles of table size. Despite the fact that initially the IDENTITY configuration

92 M. Penar

performs twice slower than the GUID – in long run, the cumulative time of all
six iterations turned out to be almost twice lower (658 seconds using IDENTITY
and 1245 seconds using GUID, as observed in Table 5).

Figure 6: Comparison of mean execution time of stored procedure (by iteration)

4.3. Experiment 3
In the last experiment we use a single connection to perform batch operations

(Bulk Inserts). In this experiment we compare Heap Files with B+ trees (with
various clustering attributes).For this test we prepared the file of 5.68 GB of raw
data. The parameters in this experiment were:

• Number of parallel clients connected to the database: c = 1
• Number of rows inserted into the table: , = 24 ∗ 10)
• Width of the row (in bytes):	- = 254
• Single commit batch size: 10)
• Single commit batches were sorted

Test was repeated 5 times on first disk and the results are shown in the figure 7.
When using B+ tree, the choice of the clustering attribute have not significantly
influenced the load time – in both cases the mean time was around 195 seconds.
Changing the table implementation to the Heap Files drastically cut down the
time. When using Primary Key (PK) constraint, the load was done in about 120
seconds. When all constraints were dropped, the load time achieved 65 seconds
(the lowest achieved load time). Interestingly enough – the choice of PK type did
not influenced significantly the time.

Performance analysis of write operations in identity... 93

Figure 7: Comparision of batch load time

5. Conclusion and further research

The study in this article shows the usage of random and monotonic attributes
(represented by GUID and IDENTITY). We shows the conditions when choosing
the right attributes leads to performance gain, measured as Transaction-Per-Mi-
nute. Also we presented the dramatic drop of the performance when data does not
fit in the memory when random attributes are used.

One should note however that some functionalities exists that can counter
this negative effect – notably partitioning, Multi-Temperature Storages [12] or
more control over the generated values (as in GUIDv1 or GUIDv2 [13]).

Further research should aim to:

1) Propose the formal model describing the performance
2) Demonstrate the ability to scale out the tables clustered on the random

attributes beyond the size of the buffer pool
3) Test the performance of bulk load when dataset is not sorted
4) Measure the impact of page fragmentation

94 M. Penar

Bibliography

[1] Ullman D.J., Widom J.: A First Course In Database Systems, Helion Publisher,

pages 110-129, 1997

[2] Leach P., Mealling M., Salz R.: RFC 4122: A Universally Unique Identifier (UUID)
URN Namespace, https://tools.ietf.org/html/rfc4122 (Access: 9 September 2018)

[3] Nilsson J.: The Cost of GUIDs as Primary Keys, http://www.informit.com/
articles/article.aspx?p=25862 (Access: 9 September 2018)

[4] Clayton R.: Do you really need a UUID/GUID?, https://rclayton.silvrback.com/do-
you-really-need-a-uuid-guid (Access: 9 September 2018)

[5] Ricken U.: GUID vs INT/IDENTITY als Clustered Key, https://www.db-
berater.de/2015/04/guid-vs-intidentity-als-clustered-key-2/ (Access: 9 September
2018)

[6] Penn J.: Taking It Further: GUIDs vs INTs as Primary Keys, https://scifisql.com/
2017/05/07/guids-vs-ints-as-primary-keys/, (Access: 9 September 2018)

[7] Boicea A., Bucur I., Radulescu F., Truica C.A.: Performance Evaluation for CRUD
Operations in Asynchronously Replicated Document Oriented Database, 20th Inter-
national Conference on Control Systems and Computer Science, Bucharest, 2015

[8] Li Y., Manoharan S.: A performance comparison of SQL and NoSQL databases,
IEEE Pacific RIM Conference on Communications, Computers, and Signal
Processing - Proceedings, 2013

[9] Elmasri R., Navathe S.: Fundamentals of Database Systems, Helion Publisher, pages
449 & 288-501, 2005

[10] Bača M., Grd P.: Analysis of B-tree data structure and its usage in computer
forensics, Central European Conference on Information and Intelligent Systems,
2010

[11] Jhingran A., Khedkar P.: Analysis of Recovery in a Database System Using a Write-
ahead Log Protocol, Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, 1992

[12] Brown D.P., Richards A: Managing access to data in a multi-temperature database,
US Patent US9015146B2, 2015-04-21

[13] Marquardt A.: Generating Globally Unique Identifiers for Use with MongoDB,
https://www.mongodb.com/blog/post/generating-globally-unique-identifiers-for-
use-with-mongodb (Access: 9 September 2018)

ANALIZA WYDAJNO ŚCI OPERACJI ZAPISU DLA TABEL
UPORZĄDKOWANYCH ATRYBUTAMI IDENTITY ORAZ UUID

S t r e s z c z e n i e

Projektowanie bazy danych wymaga podjęcia decyzji o fizycznej strukturze przechowującej
dane. Często wpływ tej decyzji jest niedoceniany ponieważ 1) standard SQL nie precyzuje tego

Performance analysis of write operations in identity... 95

ograniczenia, przez co każdy dostawca Bazy Danych implementuje je po swojemu 2) wybór struk-
tury jest podejmowany niejawnie. Na ogół domyślnymi strukturami są B+ drzewa które są struktu-
rami posortowanymi. Wybór tej konkretnej implementacji tabeli wpływa zarówno na wydajność
operacji odczytu jak i zapisu. Ze względu że częstą praktyką jest stosowanie atrybutów
IDENTITY/AUTO_INCREMENT jako kluczy głównych, według tych wartości atrybutów usta-
lany jest fizyczny porządek tabeli. W pewnych przypadkach warto jednak korzystać z atrybutów
o wartościach losowych w celu zwiększania przepustowości Bazy Danych (liczonej jako liczba
transakcji na sekundę). Takie przypadki obejmują sytuację gdy dane mieszczą się w pamięci ope-
racyjnej lub gdy możemy ograniczyć zbiór fizycznych stron do których Baza Danych będzie się
odwoływać. W ogólnym przypadku ani atrybuty monotoniczne, ani losowe nie są lepsze od swoich
konkurentów. W tym artykule (1) opisujemy struktury wykorzystywane we współczesnych Bazach
Danych, (2) opisujemy zalety i wady dwóch najczęściej wykorzystywanych typów: GUID oraz
IDENTITY, (3) prezentujemy analizę wydajności operacji zapisu porównującą oba typy w tabelach
implementowanych jako B+ drzewo, (4) analizujemy wydajność operacji wsadowego ładowania
zarówno w plikach sekwencyjnych jak i B+ drzew.

Słowa kluczowe: projektowanie baz danych, model logiczny, porządkowanie, pliki sekwencyjne,
B + drzewo, UUID, GUID, IDENTITY, sekwencje, wydajność wstawiania, ładowanie wsadowe

DOI: 10.7862/re.2020.6

Przesłano do redakcji: styczeń 2019 r.
Przyjęto do druku: luty 2021 r.

