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Abstract 

The main purpose of present article is to present the burner rig station newly developed at the Rzeszow Uni-

versity of Technology in Poland. The burner rig is dedicated to operate on fuels rich in hydrogen. The burner 

rig is able to operate with fuels with hydrogen content up to 50 volume %. A detailed description of burner 

rig construction is presented. Moreover a mathematical model predicting temperature distribution within the 

combustion chamber is presented. The obtained results showed a good insulation of burner rig construction 

leading to the temperature gradient from 1674℃ in the burner rig to 214℃ on steel housing. 

Keywords: hydrogen-rich fuel, burner rig, high temperature oxidation, water vapour, high temperature mate-

rials 

 

1.  Introduction 

Alloys used in aircraft engines or in stationary gas turbines (SGT) face harsh conditions, such as 

high temperature, aggressive gases and cyclic thermal loading. Thus, they need to possess good com-

binations of mechanical strength, microstructural stability and oxidation resistance. Ni-based alloys 

are the most common materials used in the hottest part of the gas turbines nowadays. However, the 

constant need of increase in gas turbines efficiency demands increasing of inlet gases temperature 

(Schütze & Quadakkers, 2017). Also a strong need of limitation of pollutions from jet engines exhaust 

exists. This can be achieved by using a hydrogen rich fuel despite gasoline. Combustion of hydrogen 

rich fuel results in an increase in exhaust gases temperature and higher water vapor content in the ex-

haust gases. Therefore, the materials used in the gas turbines face not only the higher temperature but 

also water vapor. It is known from the literature, that water vapor presence in the atmosphere signifi-

cantly alters oxidation kinetics of the alloys. It was found for pure chromium, that the water vapor 

presence causes increase of oxidation kinetics accompanied with better chromia scale adherence and 

formation of blade-shaped oxide (Quadakkers et al., 1996; Michalik et al., 2005; Hänsel et al., 1998; 

2003). Differences in oxidation kinetics and the oxide scale morphology formed on Ni-Cr binary alloy 

during exposure in dry and wet oxygen was found by Essuman et al. (2008) and Żurek et al. (2008), 

namely oxidation rate was found to be higher in wet atmosphere as compared to dry one. Similar ob-

servation on Ni-base alloys during oxidation in dry and humid atmosphere was found by e.g. England 

and Virkar (1999, 2001). The authors found the oxidation rates in wet hydrogen to be higher by a fac-
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tor varying between 8 and 30 compared to air, while at 1100°C the effect of water vapour decreased 

and the growth rate in wet hydrogen was higher than in dry air by a factor of 1.5 to 13.  

One of the effect of water vapor is enhanced chromium evaporation from the surfaces of chromia 

forming alloys at high temperatures. This phenomenon was extensively investigated e.g. by Opila et 

al. (2007) and Stanislowski et al. (2007) in high pO2-gas, e.g. wet air. Chromium oxide can evaporate 

according to the following reactions: 
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Volatilization of chromium species during high temperature exposure of Ni-base alloys was in-

vestigated by many researchers, like e.g. Deodeshmukh (2013a, 2013b), Holcomb (2008) or Pujil-

aksono et al. (2008). The authors found mass loss of the exposed specimen without oxide scale spalla-

tion (Deodeshmukh, 2013b) and formation of blade-shaped oxides (Pujilaksono et al., 2008). It was 

also claimed, that not only temperature, but also amount of water vapor in the atmosphere has detri-

mental effect on the rate of volatilization of chromium species (Holcomb, 2008). It was also found by 

Nowak et al. (2016) that the water vapour suppresses nitrides formation below the external chromia 

scale on Ni-base superalloy Rene 80. The authors correlated the latter with preferential adsorption of 

water vapor molecules on the surface and suppressing the nitrogen transport through the oxide scale. 

In case of an alumina forming alloys it was found by Maris-Sida et al. (2003) that presence of wa-

ter vapor in the test atmosphere, strongly enhance spallation of the oxide scale. Onal et al. (2004) 

found that for alumina forming alloys water vapour adversely affects the selective oxidation of alu-

minium. The authors concluded that suppression of external oxidation of aluminium may be the result 

of a more rapid growth of the transient oxides caused by the presence of water vapour. Enhanced 

spallation of an alumina scale was observed as well. Janakiraman et al. (1999) found that 2 to 4 times 

increase in weight loss in the presence of water vapor in the atmosphere during cyclic oxidation of Ni-

base superalloys. Smialek et al. (2010) found so called desktop spallation (DTS) and moisture-induced 

delayed spallation (MIDS). In both proposed mechanisms moisture has been postulated to serve as 

a source of interfacial hydrogen embrittlement. Hydrogen, in this particular case, is derived from reac-

tion with aluminium in the alloy at an exposed interface.  

Considering all findings mentioned above there is a strong need to find a materials exhibiting bet-

ter performance at elevated temperature and increased water vapor content. Such materials can be e.g. 

high entropy alloys (e.g. NiCoCrAlFe) or materials covered by protective coatings, like e.g. thermal 

barrier coatings (TBC) or environmental barrier coatings (EBC). Typically for conventional fuel gas 

turbines the thermal barrier coatings are used for protection of Nickel-superalloys surface material 

(Grilli et al., 2021; Suzuki et al., 2022). The outer ceramic layer contains usually yttria stabilized zir-

conia oxide (YSZ) (Golewski and Sadowski, 2019) or pyrochlores (Pędrak et al., 2021; 2022). The 

bond coat protects surface against oxidation and hot corrosion and might be formed from MCrAlY-

type alloys (Zakeri et al., 2022) or by production of aluminide coatings (Góral et al., 2021; Kopec et 

al., 2021). For production of TBCs different method might be uses such as diffusion aluminizing (Co-

cojaru et al., 2022), atmospheric plasma spraying (Girolamo et al., 2014) or electron beam physical 

vapour deposition (EB—PVD) (Qiu et al., 2021). In new Environmental Barrier Coatings (EBC) the 

outer ceramic layer might contain different ceramic materials such as Y2SiO5-YS, Yb2Si2O7-YDS, 

Gd2Zr2O7, Y3Al5O12, Yb2Si2O7-YDS, Y2O3 produced using different thermal spraying processes 

(Vassen et al., 2019). In the case of hydrogen application as a fuel the water vapor formed during hy-

drogen burning is formed during reactions (Wang et al., 2020): 

Yb2SiO5(s) + 3H2O(g)→Yb2Si2O7(s) + 2Yb(OH)3(g), (4) 
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Yb2Si2O7(s) + 2H2O(g) → Yb2SiO5(s) + Si(OH)4(g). (5) 

The silicon is usually used for protection against water vapour in this application (Chen et al., 

2021). 

However, most of aforementioned materials were examined using mixture of air and water vapor. 

Investigations of these materials in direct exhaust coming from burning of hydrogen rich fuel is very 

limited. Thus in the present work a burner rig operating with mixture of fuel and hydrogen is intro-

duced. In this equipment a testing of various materials inside the burner rig is possible, which gives 

the unique opportunity of testing in real exhaust originating from burning a hydrogen fuel in real oper-

ating conditions. Such equipment is installed at the Rzeszow University of Technology (Poland, Sub-

carpathian region).  

The hydrogen is considered as an alternative fuel for Industrial Gas Turbines. Leading IGT manu-

facturers such as MHI (Decarbonization technology, 2023), Siemens (Zero emission hydrogen turbine 

center, 2023), General Electric (Hydrogen fueled gas turbines, 2023) are  planning the using of fully 

hydrogen powered gas turbines. The first industrial scale experimental gas turbine fueled by mixture 

of natural gas and up to 20 % of hydrogen was successfully validated in Plant McDonough-Atkinson 

facility (USA) on MHI gas turbine (Southern Co., 2023). In Norway the first micro turbine powered 

by 100% hydrogen fuel was demonstrated in 2022 by Banihabib and Assadi (2022). The small hydro-

gen power generator based on small gas turbine was developed by Turbotec Company (Hydrogen gas 

turbine, 2023). This type of gas turbines might be connected with renewable energy power plants 

(wind turbines, photovoltaics (PV)) and used as energy storage unit (Grilli et al., 2021; Pyo et al., 

2021). From many years the design and manufacturing research are conducted in the case of gas tur-

bine design (Najjar, 1990; Marin et al., 2021) and materials (Stefan et al., 2022). 

The hydrogen might be also used in aeroengines. The B-57 was the first plane, which was tested 

in 50s for using of hydrogen as a fuel in Curtiss Wright J-65 jet engine. In this solution two independ-

ent fuel systems were used, namely one using kerosene and another using hydrogen (Winter, 1990). 

The using of hydrogen was considered for application of high-speed reconnaissance plane Lockheed 

CL-400 (Rich, 1973). The Tupolev (Soviet Union) converted the civil Tu-154 for using of hydrogen 

(Tupolev, 1994). Since 1991 the design of airplane using hydrogen fuel was considered in internation-

al cooperation (Westenberger, 2002). Finally the CRYOPLANE European project was run in 2000 

(Westenberger, 2003). The other solutions for using of hydrogen for aeroengine applications is using 

for petrol-powered engines (Boeing, 2010) as well as for fuel-cells proposed (Renouard-Vallet et al., 

2011). The application of fuel cells is planned by leading aircraft manufacturers such as Airbus (Air-

bus, 2023). Hydrogen is a promising fuel for hypersonic planes and was tested on X-43 experimental 

plane (Moses et al., 2004). 

Hydrogen from decades are used for rocket propulsion applications.  In the United States the M-1 

was the first hydrogen-powered rocket engine (Report 2555-M-1-F, 1967). The J-2 engine was suc-

cessfully used in Saturn family of rocked used in Apollo program (NASA, 1968). The next generation 

of cryogenic hydrogen-oxygen  (LH/LOX) powered rocket engines R-2S was applied in Space Shuttle 

as a unit with highest trust in the history (Wilhelm, 1972). Currently the Blue Origin developing the 

cryogenic BE-3 engine (Cowing, 2012). The similar development of LH/LOX rocket engines took 

splace in Russia which designed the RD-0120 engine as an equivalent for R-23S engine (Rachuk et al., 

1996). This types of engines were also developed in other countries: Japan (Negoro et al., 2007),China 

(Tan, 2013) and applied in EU - Ariane 5 (Chopinet et al., 2011), and India in GSLV-family rockets 

(Lele, 2014). 

2. Materials and methods 

Construction of burner rig dedicated for operation with fuels rich in hydrogen, which is able to 

operate with fuels with hydrogen content up to 50 volume % was described in details. A schematic 

pictures showing dimensions and cross-sections of burner rig was presented and explained. Moreover 

a mathematical model predicting temperature distribution within the combustion chamber is presented. 

The modelling is done according to algorithm shown in ASTM C 680-08 (2010).  



206                                                        W. J. Nowak, M. Drajewicz, M. Góral, R. Smusz, P. Cichosz, A. Majka, J. Sęp 

Advances in Mechanical and Materials Engineering, Volume 40, 2023, Pages 203-214     ISSN 2956-4794 g 

 

3. Results 

3.1. Burner rig description 

For a purpose of research activities, new test bench has been designed, a functional research stand 

for combustion of hydrogen-based mixtures. Combustion chamber allows research of the impact of 

hydrogen flames on the structure of base materials structure and coatings. The thermodynamical and 

mechanical design was performed to maximize technical capabilities of the rig, which is able to be 

feed of a mixture of hydrogen with an oxidant, i.e. air and/or oxygen in the desired proportions up to 

50% H2. Fuel and oxidants are supply to the burner through independent installations controlling pres-

sure, temperature and flow for each medium. An overview of the burner rig is shown in Figure 1. 

 
   (a)                                                                 (b) 

Fig. 1. Front view (a) and side view (b) of burner rig. 

The combustion chamber is a cylinder with a base diameter of about 0.15 m and a length of about 

0.5 m with a burner and a multi-position mounting bracket for the tests item. It is equipped with an 

inspection window that allows the observation of the combustion process using cameras as well as 

temperature measurement for the non-contact method. The chamber enabling simple and quick assem-

bly of the test pieces in the holder and placing it together with the holder in the chamber. In addition to 

thermal resistance, the chamber must also ensure mechanical strength, as well as must be thermally 

insulated and protected against accidental contact with hot elements by technical personnel. The com-

bustion chamber is made of refractory concrete (1) (Runcast BWM1), next thermal shock absorbing 

and sealing compound (Promix ZOR), high temperature insulation (Promaform 1430), medium tem-

perature insulation (Promaform 1260) (4) and steel casing. Inspection window (5) and thermocouple 

port (6) (Figure 2).  

 

Fig. 2. Cross-section of combustion chamber: 1 – refractory concrete, 2 –insulating concrete layer 1, 3 –insulating concrete 
layer 2, 4 – medium temperature insulation, 5 – inspection window, 6 – thermocouple port. 
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The thicknesses and order of the layers have been determined in such a way as to reduce heat loss 

as much as possible on the one hand, and to minimize thermal stresses that may cause damage to the 

concrete on the other hand.  Burner rig is built up from several segments, including burner, combus-

tion chamber, adiabatic, transition, flue gases cooling and exhaust outlet (Figure 3) and can easily be 

expanded by adding additional segments in the future depending on demands. 

The burner system placed in the chamber have an ignition system and a flame detection system 

cooperating with the leak control system and automatic fuel cut-off. Flue gas outlet led outside the 

room to the chimney with measurement of flue gas parameters. The outlet is thermally insulated and 

ensure tightness. The control system of the stand has been designed and made in a way that allows the 

preparation of an appropriate mixture for combustion, its control (composition, temperature, flow, 

pressure, etc.), safe combustion, control of the temperature of the test item and parameters in the com-

bustion chamber itself. The key parameters of the test are register by the data acquisition system 

(DAQ) and enable data export. The process control is based on the software run on industrial PLC 

controller. In the future additional capabilities will be incorporated into research rig, therefore some 

possibility of expanding its functionality in the future has been secured. The control system ensures 

the ability to remotely conduct the full test cycle and the key element of the control system is an inde-

pendent safety system guarantees the safety of its operators. The rig is control by HMI (Human Ma-

chine Interface), which allows the staff to determine the process parameters and visualize the process 

itself as well as all measured parameters. Additionally process parameters and measured data can be 

broadcast using a communication protocol. 

 

Fig. 3. Modules of combustion chamber: burner (1), combustion chamber (2), adiabatic (3), transition (4), flue gases cooling 
and exhaust outlet (5). 

Research stand is equipped with pressure reducers on each of the connected media along with 

leakage detection and has the measurement stubs allowing additional measurement of process parame-

ters not resulting from the requirements of the control system and the process safety system. 

Main process parameters: 

• Burner: 7.5 kW, 

• H2 level: up to 50%, 

• Max temp in combustion chamber: 1750°C, 

• Max fuel flow: 1.54 m3/h, 

• Max oxidant flow: 11.8 m3/h, 

• Temperature measurement points: 3, 

• Total weight: 1300 kg. 
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Figure 4 depicts the existing burner rig placed in the Hydrogen Laboratory within the Research 

and Development Laboratory for Aerospace Materials structure. The device is currently being tested. 

(a) 

 
(b) 

 

Fig. 4. Images showing the existing burner rig (a) and the control panels (b). 

3.2. Modelling of temperature distribution 

Based on the mathematical model and algorithm presented in the standard ASTM C 680-08 

(2010) the temperature distribution for all layers was calculated. The calculations take into account the 

variable value of the thermal conductivity coefficient. Perfect contact between materials was estab-

lished. The heat flux conditions for internal and external surfaces were given by Newton’s law of con-

vection. 

For the internal side: 

−𝑘(𝑇)
𝜕𝑇

𝜕𝑛
= ℎ𝑠𝑖(𝑇𝑖 − 𝑇𝑠𝑖) (6) 

where: ℎ𝑠𝑖 − heat transfer coefficient on the internal boundary, 𝑇𝑖 − fluid temperature at the inside 

boundary, 𝑇𝑠𝑖—surface temperature on the internal boundary, 𝑘(𝑇) − thermal conductivity. 

−𝑘(𝑇)
𝜕𝑇

𝜕𝑛
= ℎ𝑠𝑒(𝑇𝑠𝑒 − 𝑇𝑒) (7) 

where: ℎ𝑠𝑒 − heat transfer coefficient, 𝑇𝑒 −  fluid temperature at the outside boundary, 𝑇𝑠𝑒 − surface 

temperature on the external boundary of the model. Radiative heat exchange was taken into account on 

the outer surface. 

ℎ𝑠𝑒 = ℎ𝑐𝑒 + ℎ𝑟𝑒 (8) 
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where: ℎ𝑟𝑒 − component of the heat transfer coefficient due to radiation, ℎ𝑐𝑒 − component of the heat 

transfer coefficient due to convection. 

ℎ𝑟𝑒 =
𝜎𝜀(𝑇𝑠𝑒

4 − 𝑇𝑜
4)

𝑇𝑠𝑒 − 𝑇𝑜
 (9) 

where: σ = 5.67 ∙ 10−8  W (m2K4)⁄   is the Stefan-Boltzmann constant, 𝜀 − is the emissivity of the 
surface, 𝑇𝑜 − surrounding temperature. 

To determine the heat transfer coefficient on the internal boundary, the Gnielinski correlation was 
used, taking into account the influence of the thermophysical properties of the fluid and the thermal 
entrance region (Gnielinski, 1976): 

𝑁𝑢 =
(
𝑓𝐷
8
) ∙ (𝑅𝑒 − 1000) ∙ 𝑃𝑟

1 + 12.7 ∙ (
𝑓𝐷
8
)
0.5

∙ (𝑃𝑟
2
3 − 1)

∙ [1 + (
𝐷ℎ
𝐿
)

2
3
] ∙ (

𝜂

𝜂𝑤𝑎𝑙𝑙
)
𝑚

 (10) 

where: 𝑓𝐷 − Darcy friction factor, 𝐷ℎ −hydraulic diameter of the combustion chamber, 𝐿 − length of 
the combustion chamber, 𝑃𝑟 − Prandtl number, 𝜂 − dynamic viscosity of the fluid, 𝑅𝑒 − Reynolds 
number, 𝑁𝑢 − Nusselt number. 

𝑚 = 0.11 𝑖𝑓 
𝜂

𝜂𝑤𝑎𝑙𝑙
< 1 (11) 

𝑚 = 0.25  𝑖𝑓 
𝜂

𝜂𝑤𝑎𝑙𝑙
> 1 (12) 

On the other hand, to determine the component of the heat transfer coefficient due to convection 

on the external boundary, the Churchill and Chu correlation was used (Churchill and Chu, 1975): 

𝑁𝑢 =

{
 
 

 
 

0.6 +
0.387𝑅𝑎1/6

[1 + (
0.559
𝑃𝑟

)
9/16

]

8/27

}
 
 

 
 
2

                                            (13) 

where: 𝑅𝑎 − Rayleigh  number. 
The calculated temperature distribution in the combustion chamber is shown in the Figure 5 and 

Table 1. 

 

Fig. 5. Calculated temperature distribution in combustion chamber. 
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Table 1. Layer mean and surface temperature in combustion chamber (NASA, 1968). 

Material Thickness, mm Surface temp., ℃ Layer mean temp., ℃ 

Runcast BWM1 150 1674 1536 

Protmix ZOR 30 1426 1410 

Promaform 1430 40 1395 1249 

Promaform 1260 50 1096 720 

Steel 3 214.5 214 

As can be seen from the Figure 5 high temperature resistant alumina based refractories have low 

thermal conductivity values (Table 2) which result in deep penetration of temperature into the furnace 

wall. This requires thick walls of refractory materials to reduce the temperature to an acceptable value 

for strictly insulating materials. This is a significant limitation that makes it impossible to minimize 

the dimensions and weight of the furnace. This results in a high heat capacity of the kiln, and thus 

a large time constant during kiln start-up (Figure 6).  

Table 2. Materials thermal properties of furnace (NASA, 1968). 

Material Density, kg/m3 Layer mean temp., ℃ 
Mean thermal conductivity, 

W/m℃ 

Runcast BWM1 2600 1536 1.98 

Protmix ZOR  170 1410 2.6 

Promaform 1430  270 1249 0.34 

Promaform 1260 390 720 0.14 

Steel 7850 214 49 

 

Fig. 6. Temperature at the boundary of Runcast BWM1 and Protmix ZOR layers. 

4. Conclusions 

Burning of hydrogen enriched fuel leads to increase in operating temperature (comparing to “tra-

ditional fuels”) as well as in increase in water vapor content in the exhaust gases. The description of  

burner rig allowed to make a following conclusions: 

- The design of used burner allows for using a mixture of traditional fuels (e.g. methane, LPG) 

and hydrogen with the H2-content up to 50 volume %, 

- Due to specific design of burner rig a strict control of temperature at each stage of the burner 

rig, flame shape and exhaust gases chemical composition is possible, 

- The technological solutions applied in the burner rig allows for testing of the materials at dif-

ferent stages of it, i.e. inside the flame and behind it as well as in the zone of exhaust gases 

originated from burning of H2-rich fuels. This in turn allows for better simulation of materials 

behavior used at different parts of the turbines and makes the newly developed equipment very 

flexible, 

- Numerical modelling of temperature distribution showed significant decrease of temperature 

from 1674℃ in the inside of burner rig to 214℃ on steel housing. 
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Charakterystyka badawczego stanowiska palnikowego zasilanego paliwem  

wodorowym dedykowanego do badań materiałów 

Streszczenie 

Głównym celem niniejszego artykułu jest przedstawienie stanowiska palnikowego nowo opracowanego na 

Politechnice Rzeszowskiej. Palnik przeznaczony jest do pracy na paliwach bogatych w wodór. Palnik może 

pracować z paliwami o zawartości wodoru do 50% obj. Przedstawiono szczegółowy opis budowy stanowiska 

palnika. Zaprezentowano także model matematyczny przewidujący rozkład temperatury w komorze spalania. 

Uzyskane wyniki wykazały dobrą izolację konstrukcji palnika, co doprowadziło do powstania gradientu tem-

peratury od 1674℃ w korpusie palnika do 214℃ na obudowie stalowej. 

Słowa kluczowe: paliwo wodorowe; stanowisko badawcze; korozja gazowa, para wodna, materiały żarood-

porne. 

 
 


