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Abstract 

This review explores how generative design is combined with machine learning (ML) to achieve additive 

manufacturing (AM) and its societal transformative effect. Generative design uses complex algorithms to au-

tomate the process of designing best-fit designs, mass customization, and customization to suit specific cus-

tomer requirements with high efficiency and quality. The scalability and predictability of artificial intelli-

gence (AI) models make handling huge data easy and enable scale-up of production without compromising 

quality. This paper also focuses on how generative design can help accelerate innovation and product creation 

because it empowers designers to play in a wider space of design and provide solutions that cannot be 

reached with traditional techniques. AI integration with existing production processes is also vital to real-time 

manufacturing optimization—further increasing overall operational effectiveness. Additionally, the emer-

gence of sophisticated predictive models like gradient boosting regression shows how ML can enable better 

accuracy and robustness of 3D printing operations to achieve quality standards of the outputs. This paper ends 

with what generative design and ML hold for the future of AM and how designing continues to be improved 

and modified to match changing industry requirements. 
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1. Introduction 

Manufacturing has experienced major shifts due to the introduction of AM technologies. AM fab-

ricates components layer by layer and, unlike subtractive manufacturing, creates complex geometries 

impossible using traditional techniques. These have stimulated the increasingly fashionable concept  

of combining ML to streamline the design process, resulting in the increasingly mainstream concept  

of generative design. Generative design makes use of algorithms utilizing ML to generate vast design 

possibilities that guarantee both high performance and optimization of materials and cost (Kumar  

et al., 2022). 

Generative design is defined as an ability to model evolutionary mechanisms, enabling systems to 

evolve designs in response to performance demands and limitations. It uses AI and in particular ML to 

optimize the design stage, allowing engineers and designers to discover as many possible solutions as 

possible in a fraction of the time required by the conventional approach (Ng et al., 2024). The combi-

nation of generative design and ML further enhances the innovation of design, and it enables AM parts 

to be customized in order to further extend the capabilities of modern manufacturing (Lee et al., 2023). 

Many recent studies have highlighted techniques and models that combine generative design and 

ML to develop AM materials and optimize AM processes (Jin et al., 2020; Wang et al., 2022). Both of 

these techniques rely on the increased predictive power of ML algorithms that are able to detect pat-

terns in large datasets produced during AM, helping to guide design decisions that result in enhanced 

functional and structural properties of the parts (Wang et al., 2020). The application of ML methods  
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to generative design will potentially change the way goods are designed, tested, and manufactured in 

the manufacturing industry. 

Furthermore, the ML use in generative design goes beyond aesthetic or geometric developments 

to cover important operational parameters and constraints essential to AM, including material proper-

ties, process behavior, and environment (Ciccone et al., 2023). This deep dive of generative design 

methods employing ML for AM will shed light on the cutting-edge techniques, challenges, and future 

of this novel synthesis for the market (Johnson et al., 2020; Regenwetter et al., 2022). 

In conclusion, the combination of generative design and ML marks a revolution in AM with an 

ability to innovate design creativity, efficacy, and effectiveness while also addressing AM’s unique 

challenges. In our further parts of this retrospective, we’ll be exploring the roles, trends, and disruptive 

potential of these developments in the context of today’s manufacturing environments. 

2. Methodologies to Implement ML in Generative Design for AM (DfAM) 

When applying ML to generative DfAM, there are a number of techniques used for designing and 

manufacturing better. All of these approaches are beneficial and have their own uses to be efficient, 

cost-effective, and innovative.  

• Data Collection and Preprocessing: To make ML work in generative design, rigorous data 

collection and processing are the essential first steps. This is based on the collection of perti-

nent datasets that cover all sorts of parameters, such as material characteristics, geometry 

constraints, and performance parameters. It is such large datasets that help ML models to 

learn from various examples and predict more accurately. Preprocessing also denoises and 

normalizes the data, which removes noise and anomalies and improves the performance of 

the model (Chinchanikar & Shaikh, 2022). 

• Feature Engineering: Feature engineering is used to transform inputs into ML models. With  

a bit of research and choosing the right features (such as dimensional parameters and material 

properties), the designers can significantly impact how the model performs. Well-done fea-

ture engineering makes the model generalizable so that it can correctly predict new designs 

based on the patterns learned from the training data (Wang et al., 2020).  

• Model selection: The right ML model is also critical for the generative design. Algorithms 

like support vehicle machines (SVM), neural networks, decision trees, and others have 

strengths and weaknesses depending on the design problem difficulty. Model readability, 

computer speed, and the possibility of processing high-dimensional data are also aspects of 

selection. This phase makes sure that the model is correct for the application of the AM pro-

cess (Jin et al., 2020).  

• Training and validation: Then train the ML model that one chooses from collected and pre-

processed data to train the model to learn the relationships between design parameters and  

results. At the time of training, the model must be checked against another dataset in order 

not to overfit the training data (and result in low performance on unseen data). Each valida-

tion session can refine the model parameters and make it work best, which ultimately makes 

it better to use for generative design (Johnson et al., 2020). 

• Optimization algorithms: Optimization algorithms are essential to generative design by itera-

tively fine-tuning design solutions for specified goals. After the design space is determined, 

these algorithms check a number of parameters in parallel to find the best configurations that 

are at par with the required performance. Some of the commonly used optimization algo-

rithms are genetic algorithms and gradient descent to direct the ML models to the best design 

solutions for increasing the efficiency of AM (Soori et al., 2024).  

• Integration with Simulation Tools: Combining ML models with simulation tools enables de-

signers to compare how the generated designs perform in various conditions before going to 

production. This combination enables the design to be tested and validated in virtual space 

without large-scale real-world prototypes. These simulations can be helpful in getting insights 

and running iterations and updates at speed that helps make generative design easier 

(Regenwetter et al., 2022).  

• Continuous learning and adaptation: Implementing a continuous learning system is essential 

to keep the ML model up to date. It is a method where we regularly update the model with 

new information and results from AM. With more information—either from experiments or 

feedback from users—the model can scale changes in design, material properties, or produc-
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tion process. This flexibility makes the model more efficient over time and adapts to industry 

changes (Williams, 2022).  

• Postprocessing and analysis: The designs produced, and performance measures have to be 

processed after-the-fact to assess the effectiveness of imposed methodologies. This step will 

be looking at the outputs produced by the ML model to see which designs perform best under 

which conditions. Weight, strength and manufacturability are calculated to determine which 

design to proceed with. By analyzing outcomes closely, designers will have a better idea of 

how to improve their method and how to implement ML in generative design in the future 

(Vaneker et al., 2020).  

• User Interface and Visualization: User interface and visualization tools are important for 

communicating between designers and generative designers. These interfaces let the user feel 

free to easily tweak design settings, view results, and learn more about the effects of varia-

bles. Powerful visualization is what makes complex data digestible and so can make the de-

sign decisions easier (Guo et al., 2022). 

• Deployment and Feedback Mechanisms: The last phase is to use the ML solutions in real-

world AM environments and build feedback loops for data gathering. This is the step where 

companies can measure the impact of the implemented methods and learn from production 

results. Feedback loops are the way to iteratively improve in order to keep advancing the ML 

models and the generative design processes they’re backed by (Babu et al., 2022). 

3. Benefits and Applications of ML in Generative DfAM 

3.1. Benefits 

The first advantage of applying ML to generative designs is better design optimization. It is also 

fast enough for ML algorithms to mine the large amount of data and detect the optimal design parame-

ters that human minds cannot. With the help of historical performance data, ML can suggest weight 

and structure reduction designs that enhance the efficiency and performance of manufactured assem-

blies (Jin et al., 2020). 

An additional benefit is the time savings on design. While ML algorithms can do most of the 

work, designers must spend time on it. They can, for example, quickly iterate on design variations and 

anticipate results, reducing product development time by hundreds of percentage points (Wang et al., 

2020). This allows engineers and designers to work on things that matter instead of wasting so much 

time on tedious calculations and tinkering. 

Save money—this is a key benefit of including ML into AM generative design. In designing to 

make the most of AM, ML helps avoid material waste and costs. Smart design algorithms, for in-

stance, can propose building solutions that require less material while still performing—saving huge 

amounts in the manufacturing process (Westphal & Seitz, 2024). This efficiency can be used to lower 

the cost of AM for niche use cases that call for customized parts. 

In addition, improved material performance is another big advantage of using ML in design. ML 

can anticipate how different materials will behave under different conditions, so we can make compo-

nents lighter but more robust as well. With the right material selection and consumption optimized 

through predictive modeling, manufacturers can improve the overall quality and life of their products 

(Regenwetter et al., 2022). 

Last but not least, ML allows for the integration of multidisciplinary expertise in design. Incorpo-

rating input from other areas of knowledge, including mechanical engineering and materials science, 

can help ML create novel design alternatives that demonstrate a more general understanding of the 

AM’s needs and limitations. It is through this ambivalent methodology that we can see design innova-

tion break the limitations of what is already possible with conventional means (Bendoly et al., 2023). 

3.2. Applications 

Topology optimization (TO) is one of the main use cases of ML in generative design. ML algo-

rithms are used to calculate the optimal physical configuration of buildings according to performance 

constraints. The algorithms study the design and materials in use to identify the best practices for pro-

ducing structures that are both usable and efficient, which are necessary for light and strong parts  

in aerospace and automotive designs (Jin et al., 2020).  
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ML is also used for designing space exploration, where ML is used to automate the journey 

through different designs. Algorithms evaluate multiple parameters at once, and the most promising 

design solutions are found much more quickly than with any other means. It can bring out the design 

more imaginatively and more innovatively, making AM technologies more efficient (Chaudhari & 

Selva, 2023). 

Predictive maintenance, another important ML use in generative design, is another one. Analyz-

ing AM process data, ML algorithms will detect part failures or defects in advance of them occurring 

so that corrective action can be taken prior to them happening. This makes components created 

through generative design durable and secure, and it can drastically mitigate unexpected outages 

(Nyamekye et al., 2024).  

In customizing and personalizing products, ML is also very helpful. ML in the healthcare sector 

can be used to design customized surgical implants or prostheses using patients’ information. Auto-

mated design algorithms adjust the parameters based on one’s needs to get the final result that is not 

just custom but also performance optimized (Westphal & Seitz, 2024). 

Finally, ML helps in better simulation of some generative design cases. ML makes realistic simu-

lations of the operation of parts at different temperatures that can help engineers verify designs before 

they’re actually built. This is not only more time efficient for designing but also for checking that the 

end product is quality and functional—thus reducing the risk involved in launching new designs into 

the market (Regenwetter et al., 2022). 

4. Past Projects in Manufacturing Companies Implementing ML for Generative 

Design in AM 

The manufacturing environment has changed the build products with advanced technologies, es-

pecially ML and AM. Of all these developments, generative design is the one that has brought the 

capabilities of product design and manufacturing into the modern day. In this article, we want to share 

some of the earlier projects done by big-name manufacturing organizations that have implemented ML 

in AM for generative design. These efforts are proving both the promise of combining generative de-

sign and ML, and the impact these technologies can have across multiple industries. From aircraft to 

medical devices, Autodesk, General Motors (GM), Lockheed Martin, and NASA have all shown 

promising successes focused on designing parts more efficiently, automating production processes, 

and improving overall manufacturing efficiency. By explicating these projects, we can recognize how 

profoundly ML and generative design are still changing the way we build products. 

4.1. Generative Design for 3D Printing at Autodesk (2018) 

Autodesk introduced generative design for 3D printing, using an algorithm that reduces design 

repeats. Using this technology, engineers and designers can design any potential variety of solutions 

that fulfill some performance requirements, and it will help in reducing cost and being creative while 

designing products. Generic design tools allow one to generate thousands of designs at a moment’s 

notice, creating lighter, stronger and more material-efficient parts than traditional ones. This ability 

comes in handy especially for applications like aerospace and automotive where optimal components 

are required. Autodesk’s efforts in building complex scale 3D-printed building components with part-

ners such as Acciona are just the beginning of applications of this technology (Toro, 2024). Introduc-

ing AI in the design flow is Autodesk’s way to transform the creation process for products by going 

beyond traditional processes to build a more creative design world. 

4.2. GM - Project Dreamcatcher (2018) 

GM collaborated with Autodesk to use generative design to develop automotive parts, including 

low-slung seat brackets. In this collaboration, AI algorithms examined multiple design variants that 

maximize strength and lightness. Its generative design tools enable engineers to enter constraints and 

requirements that result in creative designs otherwise impossible by conventional methods (Beesley, 

2020; Kvernvik, 2018). 

4.3. Lockheed Martin – Spacecraft Components (2018) 

Lockheed Martin also employed generative design in the design of components for spacecraft; 

AM is coupled with generative design for part optimization. The firm employed this technology, for 
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instance, to build sophisticated brackets and other structures that are needed to run the satellite. 

Through the use of computer algorithms, to look at design options, Lockheed Martin developed high-

fidelity aerospace-grade components that are also lightweight and affordable (Werner, 2018). This 

flexibility is important as the aviation industry becomes more advanced and efficient in designs that 

would otherwise be difficult to fabricate by conventional manufacturing. 

4.4. NuVasive - Titanium Implants (2018) 

NuVasive   transformed spinal implant technology by ML-based generative design within AM. 

The Modulus titanium implants, created using proprietary optimization software, are organic and po-

rous, mimicking natural bone in order to support osseointegration and minimize stress shielding 

(Mattias, 2024; Mazer, 2017). Hence, this process of generative design leads to the development of 

light and unsymmetric structures not possible with conventional approaches, leading to improved sur-

gical performance and healing outcomes (Mattias, 2024). NuVasive highlights the ability of generative 

design to compare many designs rapidly, maximizing performance requirements while maintaining 

structural integrity (Christian, 2018). This same dedication to innovation can be found in these im-

plants, which are a great advancement in introducing cutting-edge technology to medical devices 

(Mattias, 2024; Mazer, 2017). And thus, NuVasive is revolutionizing spine surgery through these new, 

patient-centric design techniques. 

4.5. NASA's Utilization of ML-Driven Generative Design in AM for Aerospace Applications 

(2018) 

NASA has implemented ML-based design into AM, which will transform aerospace component 

production. This is what enables AI to create optimized designs that meet given needs effectively. 

Since 2018, NASA has been using generative design to achieve remarkable improvements, such as 

cutting component weights by up to half and reducing development times from months to days 

(Rivera, 2024). The EXCITE mission highlighted new techniques where AI and AM have produced 

seemingly nonstandard structures that are structurally sound and functional in use (Rivera, 2024; 

Rosen, 2023). As Ryan McClelland explained, generative design makes it fast—creating 30-40 de-

signs in an hour, maximizing mass and performance. This innovative technology can be used not only 

for better design but also to drastically reduce production costs, which was a revolutionary step in 

aerospace engineering (Rivera, 2024).  

4.6. Airbus - Lightweight Aircraft Interior Components (2019) 

Airbus is currently using generative design to create lightweight aircraft parts like the bionic par-

tition for their A320 plane. The partition was created in Autodesk’s generative design software and 

was 45% lighter than conventional components without compromising structure. Airbus is able to can 

design parts that will lead to less fuel and better performance from the aircraft by adopting generative 

design techniques. This project fits into their aerospace sustainability agenda and strives to lower the 

ecological footprint of aviation (Deplazes, 2019). 

4.7. GE Aviation - Aircraft Engine Components (2019) 

GE Aviation uses generative design to optimize the internal parts of its aircraft engines, including 

fuel nozzles. The first 3D-printed fuel nozzle derived from generative design principles was launched 

by GE for weight reduction and performance enhancement. The algorithms let engineers test and pro-

totype thousands of possible designs very quickly, making them lighter and more energy-efficient 

under load. These advancements underscored GE’s strategy of using cutting-edge manufacturing pro-

cesses to optimize the aviation marketplace (Markovic, 2022). 

4.8. Leveraging ML for AM in Boeing's Aircraft Design (2021) 

Boeing also used ML to design AM process improvements for aircraft manufacturing (by much 

since 2021), optimizing component designs through the use of ML algorithms and making them to 

produce higher complexity geometries than traditional manufacturing processes could do (Warde, 

2023). This option lowered the weight, enhanced performance, and improved production efficiency. 

Exhibits such as MEDAL, which used ML to improve AM characteristics of metal alloys, enabled 
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Boeing to accelerate the time and costs of production (Warde, 2023). Further, Boeing’s partnerships 

with academia, including MIT, have spawned education initiatives that developed worker capabilities 

in AM and ML that reflected the rising use of AM and ML in aerospace. On the whole, Boeing’s 

adoption of ML in AM was a major step in a journey towards new and efficient production in the aer-

ospace sector. 

Overall, ML for generative design in AM is something that has revolutionized the production 

possibilities of all sectors. In projects carried out by some of the largest firms—Autodesk, GM, Lock-

heed Martin, NuVasive, and Boeing—we could see the tremendous advantages of this technological 

co-design, such as higher efficiency, decreased material use, and structural optimization. Such previ-

ous projects provided a framework for future innovation and served as a model for other industries that 

seek to leverage technology for better products and manufacturing processes. 

5. Overview of Past Research on Generative Design using ML for AM 

The amount of research on generative DfAM using ML has grown dramatically in the past 10 ye-

ars, with a peak in publications in 2020–2021. This trend is part of an increasing use of AI to innovate 

and improve AM design practices, which has remained consistent but at a somewhat lower rate ever 

since. Fig. 1 shows how the field has changed over the time from 2013 to 2024 (n = number of articles 

per year). 

 
Fig. 1. Number of articles on Generative Design using ML for AM vs. year. 

Different publishers have been responsible for publicizing this research. In Table 1 below, we 

have listed publishers and articles in this paper they have published. 

5.1. Design and Performance Enhancement 

Gu et al. (2018) used ML to build generative designs for hierarchical materials and showed that 

their ML-optimized designs improved mechanical properties to about 25 times tougher than traditional 

materials and were computationally fast, screening billions of designs in a matter of hours. A genera-

tive design optimization strategy by Strömberg (2019) combined TO and cellular lattices with massive 

increases in AM design efficiency using material layout optimization and support vector machines for 

prediction has been described. Goguelin (2019) focused on AM-specific generative design methods 

and showed how advanced computation enabled part geometries, performance, and better use of mate-

rials. In that research, it was shown that generative design resulted in enhanced strength-to-weight 

ratios and helped design difficult geometries previously unimaginable using classical techniques, mak-

ing it applicable in fields from aerospace to automobile. 

Hyunjin (2020) investigated how artificially generated generative design systems can radically al-

ter the manufacturing process. This a study affirmed that AI and human designers work collaborative-

ly to determine the best design choices and materials for an optimal product, implying an important 

paradigm shift to AI-based approaches in future product design. Ricotta et al. (2020) proposed a gen-

erative parametric model algorithm for elbow orthoses, which highlighted the role of 3D capture and 

modeling of structures in order to customize and predict orthopaedic device customization. They 

showed that it was feasible to use selective laser sintering (SLS) technology and found that generative 

algorithms could bypass the limitations of traditional CAD, making design easier.  
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Table 1. Number of articles on Generative Design using ML for AM by Publisher 

Publisher Number of articles reviewed 

Springer 9 

Elsevier 7 

MDPI 7 

arXiv (Cornell University) 4 

IOP Publishing Ltd 4 

ASME 3 

Emerald 2 

ACM 1 

AIP Publishing 1 

Cambridge University Press 1 

CIMNE 1 

eCAADe 1 

IASDR 1 

IEEE 1 

IJECE 1 

IJMRET 1 

JETIR 1 

Justia 1 

MATEC 1 

Royal Society of Chemistry 1 

Taylor & Francis Group 1 

Toronto Metropolitan University 1 

UIKTEN 1 

University of Bath 1 

Wiley 1 

Total 54 

The same goes for Aman (2020), who studied the optimization and performance enhancement of 

bracket design using Autodesk Fusion 360; they differentiated generative design from optimization: 

iterative solutions verified via stress, heat and buckling simulation resulted in successful design im-

plementation into workable assemblies. 

Ntintakis and Stavroulakis (2020) talked about the latest developments in generative design, for 

instance, soft robot actuators. Their work demonstrated how generative design was able to generate 

complex forms in a way that conventional manufacturing wasn’t able to produce, validating their 

models through finite element analysis (FEA) and exploring the effects of material choice on actuator 

behavior. Kumaran and Senthilkumar (2021) utilized generative design and optimization of topology 

to analyze industrial robot arms and showed that AM such as powder bed fusion and direct energy 

deposition (DED) can be used to solve structural complexity and weight and provide for efficient re-

pair mechanisms. The generative design strategy of Yadav et al. (2021) was used to enhance Un-

manned Aerial Vehicle (UAV) frame designs, showing the ability of AM to design complex geome-

tries in response to performance needs by using FUSION 360 software. 

Ricotta et al. (2021) specifically developed a generative algorithm for creating elastic shapes for 

orthopedic use and created an optimized elbow orthosis, better fitting and performing than previous 

designs based on Finite Element Method (FEM) simulations. Barbieri and Muzzupappa (2022) have 

examined generative design and TO to its full extent by redesigning mechanical parts of a Formula 

Student racing car and finding impressive performance gains. They showed that generative design 

outperformed TO for mass reduction and safety factors, showing that generative design could design 

light and strong structures. Watson et al. (2023) instead created a generative design approach for 

space-frame systems especially to optimize efficiency. They implemented formal TO techniques and 

generated high-performance designs by using a parameterization strategy that transformed voxel data 

into manageable models. In the paper, they claimed that six plausible topologies were generated while 

taking into account restrictions of certain input parameters. 

5.2. Robust Material Design 

Nordin et al. (2013) researched generative design systems that used nature-based algorithms to 

create sophisticated, mass-produced objects, showing the ability to combine form and function across 

a range of manufacturing processes, including CNC milling and AM. Jiang et al. (2020) developed  

a parallel trend by carrying out an ML-integrated design system that optimized design parameters  
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of customized products (for example, a tunable mechanical performance ankle brace). Their example 

showed that ML made a big impact in design and gave us a detailed insight on how design decisions 

affect performance. Almasri et al. (2020) used a dual-discriminator generative adversarial network 

(GAN) to apply mechanical and geometrical constraints to AM design. That method effectively max-

imized topology, leading to mechanically reliable designs following sophisticated constraints. 

Goudswaard et al. (2021) developed a neural network capability profile to improve filament dep-

osition modeling (FDM) and showed that their generative design algorithm was capable of accurately 

predicting mechanical values such as ultimate tensile strength (UTS) and tensile modulus (E), with 

low prediction errors, and verifying the capability profile via successful load-bearing part designs. 

Siegkas (2022) used GANs to generate dense 3D porous architectures similar in nature to forms found 

in the natural world, showing how AM could benefit from biomimetic designs, despite observed dif-

ferences in mechanical performance due to resolution variations in image generation. Felbrich et al. 

(2022) pioneered by integrating generative design software and deep reinforcement learning for robot 

autonomy in AM, establishing the critical role of geometric state representation and task-specific train-

ing approaches for complex structure construction. 

Zhang et al. (2022) created a probabilistic ML-based prediction system for DED of about 1,150 

tensile test specimens. Their findings showed that probabilistic modeling reduced the time and cost of 

validation of material systems to less than 0.5 for most properties with an R2 of over 0.5, and it also 

tackled dataset sparsity and aleatory uncertainty. Junk and Rothe (2022) focused on ultra-lightweight 

automobile parts using generative design and fiber-reinforced AM. Their findings showed dramatic 

decreases in cost and weight, with a safety factor of 1.44 in mechanical tests, though they do leave 

some room for improvements in fiber reinforcement design. Dheeradhada et al. (2022) expanded the 

domain of design of experiments (DoE)-informed design with ML that allowed higher manufacturing 

accuracy and a reduction of model uncertainty by 25%. 

Milone et al. (2023) designed a shape optimization algorithm for hip replacement prostheses that 

increases volume and mass by 20% and maximum von Mises stress by 39%, indicating durability and 

performance. Awd et al. (2024) studied how manufacturing metadata can be integrated into ML mod-

els to predict fatigue properties in metamaterials, showing that mechanistic functions can quantify the 

influence of defects on fatigue lifetime to design better materials. Cao et al. (2024) used an image-

based GAN algorithm to study microstructures in metal AM, which was able to produce high-

resolution images very similar to actual microstructures and enable better material property measure-

ments. 

Headley et al. (2024) presented an augmented ML technique in AM of thermoelectric materials 

and reported over 99% density and shorter build times on bismuth telluride parts that allowed for im-

proved process parameters without degradation in quality. 

5.3. AM Process Automation and Optimization 

Mostafavi et al. (2015) continued this by developing the Informed Design-to-Robotic-Production 

(D2RP) system for material deposition in robotic 3D printing. Their work forged a relationship be-

tween design and production, improving the performance of architecture with smart management of 

porosity. In contrast, Tutum et al. (2018) addressed functional generative design by using a variational 

autoencoder and surrogate modeling to optimize complex 3D-printed springs. They found both 

strength of the generated geometries and applicability of the method for other functional design chal-

lenges. Nguyen et al. (2018) developed a mixed generative-discriminative inverse materials design 

method that efficiently predicted design parameters with imperfect information, making the materials 

design process faster and more effective. 

Ko et al. (2019), by comparison, introduced an ML-based system of continuous knowledge engi-

neering in AM with the focus on design and manufacturing data-driven insights. The results they pro-

duced revealed that the algorithm could be used to automate the rule generation from AM data to sig-

nificantly enhance part quality using intelligent decision-making. Jaisawal and Agrawal (2021) de-

scribed many different techniques of generative design in detail, sorting by techniques and stressing 

the need to use computing power to come up with multiple design options during the multidimensional 

planning phase of product design. Their article emphasized the multidisciplinary-ness of generative 

design. Alternatively, Sotomayor et al. (2021) had an emphasis on reducing DfAM workflow with the 

help of advanced design tools and highlighted some optimization techniques such as topology and 

lattice infill optimization that complemented material efficiency and performance. 
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Ko et al. (2021) targeted establishing AM design rules with a data-driven approach leveraging 

ML and knowledge graphs to learn more about AM processes and consequences, resulting in LPBF-

specific design rules. Grierson et al. (2021) also discussed the broad effects of ML on AM by noting 

its positive role in technological adoption but admitting to the limitations of existing applications, in-

cluding the need for more powerful, field-tested ML packages and generalizable models for process 

parameter optimization. On the contrary, Hsu et al. (2022) had developed a novel approach that trans-

lated natural language input into 3D-designed material via a mixture of GANs and contrastive lan-

guage-image pre-training. Their work demonstrated the effective design of materials of variable rigidi-

ty and showed potential to apply material science more broadly, but they were more concerned with 

the amputation of language to matter. 

Sandeep et al. (2022) assessed ML’s role in AM, which highlighted the potential to maximize de-

sign, production, and defect detection and identified a lack of research about ML’s repair and restora-

tion applications. In a related article, Staub et al. (2022) proposed a ML-based technique for AM to 

detect problematic geometrical features with a success rate of 88% in detecting hard-to-manufacture 

geometries. This showed ML’s ability to optimize manufacturability through custom scanning tech-

niques. Ajayi et al. (2023) demonstrated a new 3D-VAE-SDFGAN method to create 3D forms from 

2D pictures that scalably and visibly outperformed previous approaches, indicating that the use of ML 

for designing might be the future. 

Pilagatti et al. (2023) analyzed GD and AM’s integration in the space industry, recommending a 

process that automated the design selection cycle and reduced project duration. Trovato et al. (2023) 

identified other general trends of ML in AM design, separating use cases into geometrical design, pro-

cess setup, and process monitoring. They highlighted the disadvantages of AM, such as cost and di-

mensional tolerances, and advocated ML as a way to improve the design process. Ng et al. (2024) also 

discussed ML applications in AM with detailed coverage of how ML has been used to identify pattern 

complexity and reverse-engineer design workflows to significantly improve production productivity 

and quality assurance. 

5.4. New Use Cases 

Oh et al. (2019) combined deep generative models with TO to build a system that produced per-

formant designs through a case study that confirmed the effectiveness of the system over earlier gen-

erative approaches. Ghiasian and Lewis (2020) proposed a design recommender engine that used ML 

to convert legacy part inventories into AM. Their findings showed marked enhancements in design 

ease for AM, which also highlighted how ML could inform efficient design adjustments and improve 

manufacturing practices. Jin et al. (2020) turned to ML’s capabilities to mitigate AM issues, including 

build deviations and material property differences. They detailed the use of ML algorithms for geo-

metrical design, process parameter tuning, and in-place anomaly detection with a roadmap for enhanc-

ing manufacturing efficiency.  

Pollák et al. (2020) demonstrated the use of generative design software for robotic 3D printing by 

showing the flexibility and speed of rapid prototyping with Rhinoceros and Grasshopper-based pro-

grams, allowing to go from design to simulation without friction. Junk and Burkart (2021) evaluated 

CAD software, Fusion 360, Solid Edge, and CogniCAD, in generative design terms: Fusion 360 and 

Solid Edge both produced the same design, but CogniCAD was far different, with user interfaces, 

calculation times, and design considerations varying across systems. Nebot et al. (2021) proposed  

a novel generative design approach that combines 3D morphing with genetic algorithms for breaking 

the cycle of traditional design obsession, but their conceptual process never got applied, setting a prec-

edent for the coming years. 

Yoo et al. (2021) examined how deep learning can be implemented within CAD/CAE for genera-

tive design and developed a formal model to automate 3D CAD model creation and analysis for  

a high-productivity conceptual design workflow using an example. Kanagalingam et al. (2023) were 

more interested in generative design as applied in medical implants—high tibial osteotomy fixation 

plates. Then, they presented an AM workflow that combined generative design and detailed design 

with significant enhancements in surface finish and geometric precision with the help of advanced 

post-processing. Marino (2023) analyzed drone frame optimization through generative design and AI 

algorithms and found that a square-type frame with load distribution was the most suitable one for 

PEEK 3D printing. 
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5.5. Challenges and Limitations 

Yao et al. (2017) proposed a mixed ML solution that recommended AM design features, which 

could assist the novice designers by computing support for AM. Guerguis et al. (2017), in contrast, 

addressed the algorithmic design of massive AM architecture, which demonstrated that 3D printing 

was able to make architecture more energy efficient. In 2020, Cunningham et al. (2020) utilized  

a sparsity-preserving genetic algorithm paired with generative neural networks to create various useful 

3D models. This strategy was successful in their discovery of latent space, and they could produce 

designs with a functional advantage while remaining close to the human models so as to allow for 

a transition from design innovation to experimental testing. 

Peles et al. (2023) used GAN for structural analysis of additively made parts and showed that the 

technique could reliably predict melt pool boundaries and defects from optical photos. They found that 

melt pool geometries were positively skewed in their area probability distribution, indicating a strong 

use of deep learning for structural information in AM. Lastly, Peckham et al. (2024) in their paper also 

pointed out that generative design in AM has some randomness; performance varies as much as 592% 

from design to design, which warrants better user training and learning of generative design tooling  

to enhance the design results. 

6. Conclusions 

As ML is already used in AM generative design, the production capability can grow across indus-

tries and scale. ML-driven generative design could provide new opportunities for production, allowing 

them to generate complex geometries that would not be achievable with conventional manufacturing. 

It allowed not only design accuracy but material consumption to be maximized for more effective 

manufacturing. Generative design helped to be sustainable by reducing material waste with algorithms 

and iterative optimization. This solution provides clear environmental benefits, for example, in the 

case of aerospace, where lightweight materials mean a reduction in fuel usage and associated envi-

ronmental impacts. Optimization for a specific performance need (like strength, weight, etc.) leads to 

lightweight and economical designs. Not only does this lower production costs, but it also increased 

the overall performance of final products, which is what makes generative design such a powerful 

resource for manufacturers. Past innovations of the pioneers of a specific industry set the example for 

future innovation. The continuous adoption of ML in generative design should address underlying 

production efficiency and variability issues leading to reliable and innovative manufacturing technolo-

gies. The paper concludes that the convergence of generative design and ML isn’t a mere technologi-

cal solution but a force of change that can yield future more sustainable, efficient, and novel forms  

of manufacturing. 

7. Future Scope 

The potential for generative design coupled with ML in AM is huge for creativity and efficacy. 

The following are some of the most promising future directions: 

• Advanced Predictive Models: Future research will have to focus on building better ML models 

capable of predicting the quality of 3D printed items with better precision. For example, gradi-

ent boosting regression (which achieved an R-2 score of 0.954) with improvement of models 

may enable one to better optimize construction orientation and component dispersion and de-

liver high-quality outputs during production. 

• Integration with Production Management: It is essential to integrate AI models in the current 

manufacturing process. Moving forward, efforts need to focus on building flexible systems 

that support multiple data science tools and frameworks like TensorFlow and ONNX. This 

would also enable the telemetry between AI models and production sites in real time, enabling 

manufacturing automation in real-time. 

• Sustainability Programs: With companies’ awareness of sustainability, generating design 

could also be key to reducing waste and materials. The research needs to investigate even 

more advanced algorithms that further increase resource efficiency, along with environmental-

ly friendly manufacturing processes in other sectors. 

• Industry-Level Applications: Although current applications for aerospace and automotive are 

incredible, there is significant potential for generative design and ML to be applied in many 
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other fields, such as healthcare, consumer products, and construction. Analyzing these new  

areas could result in new products tailored to specific industrial issues. 

• Academic Partnerships: Collaborations between leaders from industry and academic organiza-

tions could enable a skilled workforce capable of AM/ML. Such efforts as Boeing’s and 

MIT’s might help to lay the skills and knowledge base to drive further developments in the  

industry. 

The future of generative design in AM through ML is truly endless and promises more predictive 

power, sustainability, and expanded domain application. This potential will require a sustained com-

mitment to research and collaboration. 
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Przegląd Projektowania Generatywnego z Wykorzystaniem Uczenia Maszynowego 

w Produkcji Przyrostowej 

Streszczenie 

W niniejszym artykule przeglądowym zbadano, w jaki sposób projektowanie generatywne jest łączone z 

uczeniem maszynowym w celu realizacji produkcji przyrostowej i jej transformacyjnego wpływu na społe-

czeństwo. Projektowanie generatywne wykorzystuje złożone algorytmy w celu automatyzacji procesu projek-

towania najlepiej dopasowanych struktur, masowej personalizacji i dostosowywania do konkretnych wyma-

gań klienta przy zachowaniu wysokiej wydajności i jakości. Skalowalność i przewidywalność modeli sztucz-

nej inteligencji (ang. Artificial Intelligence - AI) ułatwiają obsługę dużych ilości danych i umożliwiają ska-

lowanie produkcji bez uszczerbku dla jakości. Niniejszy artykuł koncentruje się również na tym, w jaki spo-

sób projektowanie generatywne może pomóc przyspieszyć innowacje i wytwarzanie wyrobów, ponieważ 

umożliwia projektantom działanie w szerszej przestrzeni projektowania i dostarczanie rozwiązań, których nie 

można osiągnąć za pomocą tradycyjnych technik. Integracja AI z istniejącymi procesami produkcyjnymi ma 

również kluczowe znaczenie dla optymalizacji produkcji w czasie rzeczywistym — co dodatkowo zwiększa 

ogólną skuteczność operacyjną. Ponadto pojawienie się zaawansowanych modeli predykcyjnych, takich jak 

regresja z pobudzeniem gradientowym (ang. gradient boosting regression), pokazuje, w jaki sposób uczenie 

maszynowe może zapewnić lepszą dokładność operacji drukowania 3D w celu zapewnienia standardów jako-

ściowych wyrobów. Artykuł zakończono omówieniem projektowania generatywnego i uczenia maszynowego 

w aspekcie rozwoju przyszłościowego wytwarzania przyrostowego oraz sposobów, według których projek-

towanie może być udoskonalane i modyfikowane, tak aby dostosowywać się do zmieniających się wymagań 

przemysłu. 

Słowa kluczowe: projektowanie generatywne, uczenie maszynowe, wytwarzanie przyrostowe, projektowanie 

struktur lekkich, optymalizacja 
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