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Abstract 

This review paper investigates how machine learning (ML) has transformed multiple facets of aviation engi-

neering. The work demonstrates substantial progress in flight operations and air traffic management (ATM) 

optimization through frameworks such as Reinforcement-Learning-Informed Prescriptive Analytics (RLIPA) 

and deep reinforcement learning (DRL) techniques applied to conflict resolution. The study highlights how ML 

contributes to operational efficiency through faster computational processes and better decision-making abili-

ties for those who control air traffic. The paper examines how leading firms such as SpaceX and Raytheon use 

ML technology to enhance manufacturing processes, including predictive maintenance (PdM) and autonomous 

systems development. The paper discusses ML implementation obstacles, including model interpretability, and 

highlights further research requirements for adapting to real-world issues such as changing traffic volumes and 

weather variations. Overall, the study demonstrates how ML technology can transform aviation engineering 

through enhancements in safety standards as well as operational and process efficiency. 

Keywords: machine learning, aviation engineering, predictive maintenance, air traffic management, integra-
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1. Introduction 

ML stands as a transformative technology in aviation engineering because it finds application 

throughout different industry sectors. As more industries adopt data-driven decision-making systems, 

ML becomes central to applications that boost PdM capabilities along with safety monitoring, perfor-

mance optimization, and operational efficiency. ML methods solve intricate aviation problems, includ-

ing fault detection and ATM, while boosting security measures, which results in higher safety standards 

and system reliability (Shuaia et al., 2023; Karaoğlu et al., 2023). 

There are no industries as regulatory and operational as the aviation industry, and so there are new 

and unique challenges that can be met with ML. ML algorithms can mine vast volumes of data that are 

generated from airplanes and detect patterns and make predictions that reduce human labor and optimize 

various operations (Garcia et al., 2021). In addition, the coupling of ML with other new technologies, 

including the Internet of Things (IoT) and big data analytics, opened the possibility for the analysis and 

decision-making of data in real time and eased the operation and maintenance of airplanes (Murthy et 

al., 2023; Timjerdine et al., 2024). 

PdM is one application of ML in aviation engineering. Predicting what will fail using historical 

information of aircraft performance and history of maintenance helps ML models to take predictive 

action in order to make aircraft reliable and minimize maintenance. Preventive maintenance measures 

like these have become more and more important for airlines who want to minimize downtime and 

maximize flights (Karaoğlu et al., 2023; Wade et al., 2017). Additionally, ML can help build advanced 

flight management systems that leverage real-time information to control air traffic and find flight 

routes, which saves fuel and emissions (Garcia et al., 2021; Timjerdine et al., 2024).  

ML also addresses major safety issues during flights.  Stakeholders can monitor aircraft systems 

for anomaly trends that signal potential failure or cybersecurity threats with anomaly detection systems 

powered by ML. With the evolution of the aviation industry, artificial intelligence and ML are expected 

to grow even more significant in the future of aviation engineering and change the way the industry 

operates (Shuaia et al., 2023; Luettig et al., 2024). 

Overall, this overview of ML in aviation engineering shows how massive the potential is of these 

technologies to change the face of processes, increasing safety, efficiency, and reliability. As the market 

develops in this space, further studies will be needed to optimize methods and resolve the challenges of 

the certification and deployment of ML systems in aviation (Wade et al., 2017; Luettig et al., 2024). 

2. Review methodology 

This paper uses a systematic method to analyze current literature about ML applications in the 

aviation industry. Here are the key components of the review methodology: 

• Literature selection 

Time frame: The review examines scholarly articles published between 2019 and 2024 to stay 

current with the latest developments in ML applications for aviation engineering. 

• Comparative analysis 
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Categorization: The analyzed research papers have been organized according to distinct ML 

applications, which include: 

- Optimization of flight operations and ATM, 

- Enhancement of autonomous flight systems and safety, 

- PdM and fault diagnosis in aircraft systems. 

Tables for comparison: The paper presents comparison tables that detail the reviewed articles. 

These tables highlight: 

- Focus areas of each study, 

- Methodologies employed,  

- Key discoveries and outstanding issues regarding the application of ML in every category. 

• Identification of gaps 

Unresolved Challenges: The review documents unresolved challenges encountered during the 

application of ML across various domains within aviation engineering, which include problems 

of model interpretability and system integration as well as real-time applicability in dynamic 

environments. 

• Conclusion synthesis 

Summary of Findings: The paper ends with a summary of how machine learning can revolu-

tionize aviation engineering while highlighting the necessity for further research to tackle pre-

sent issues and investigate new applications. 

The review methodology delivers comprehensive results through systematic literature selection and 

comparative analysis, which identifies gaps and synthesizes research findings to present current ML 

applications and future directions in aviation engineering. 

3. Methodologies to implement ML in aviation engineering 

ML integration into aviation engineering uses a systematic method to improve industry perfor-

mance together with safety and efficiency. Advanced algorithms and statistical models enable ML to 

process large volumes of aviation data, which supports PdM practices as well as fatigue management 

and mission planning with operational optimization. A well-defined methodology with multiple critical 

stages needs to be followed for successful ML integration into aviation systems. The major elements of 

the methodology include data collection and preprocessing along with model selection and training/test-

ing before system integration and human factor considerations. The following subsections outline these 

key steps in the ML implementation process, highlighting their significance in advancing aviation engi-

neering: 

• Data collection and preprocessing: implementing ML in aviation engineering begins with data 

collection and preprocessing (Kabashkin et al., 2023). Effective ML models require comprehen-

sive datasets. Operational aircraft sensor data, maintenance records, and environmental condi-

tions make up these datasets. The data preprocessing stage remains crucial to maintaining high-

quality datasets because it consists of cleaning activities along with normalization and transfor-

mation procedures that boost model performance. Outlier detection with missing value imputa-

tion and noise reduction methods enhances data integrity during data preprocessing (Ahmadi et 

al., 2017). 

• Selection of models: Choosing appropriate ML models is essential to attain successful results in 

aviation applications. Several ML algorithms are suitable for use in different contexts, including 

supervised learning models along with unsupervised learning techniques and reinforcement 

learning (RL) approaches. Supervised learning methods such as decision trees and neural net-

works frequently serve as tools for PdM because they help predict possible machine failures 

(Hasan et al., 2022). Clustering as an unsupervised learning method enables pattern recognition 

within unlabeled data, which proves useful for detecting anomalies and optimizing operations 

(Jacko, 2009). The choice of the right model relies on its application purpose in aviation engi-

neering and the characteristics of the collected data. 

• Training and testing: After models are selected, training and testing models on the current da-

tasets is done. It involves reworking the data into training and testing sets in order to check the 

performance of the model (STP, 2021). In training, the model can learn from the data patterns, 

and in testing, it can be tested on unobserved data. There are performance metrics, such as ac-

curacy, precision, recall, and F1-score, used to calculate the predictive performance of the 
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model. To achieve optimal performance, iterative model tuning might be required, which in-

cludes methods such as cross-validation combined with hyperparameter optimization (Ahmadi 

et al., 2017). 

• Integration into aviation systems: ML applications are only effective when the models are inte-

grated into current airplane systems. In this step, the models are deployed to in-house software 

for flight operations, maintenance schedule, or safety analysis (Lüdtke & Möbus, 2005). Inte-

gration will require working with software engineers and aviation professionals to make sure 

the ML models are compatible with practical operational requirements and regulatory require-

ments. Also, continuous monitoring and updates of the models to take account of changes in the 

working environment and to make the models accurate as the years pass. 

• Human factors and ML: When it comes to ML in aviation, human factors come into play. ML 

algorithms should complement, not supersede, human judgment. Interface design and compre-

hensibility of model output are important issues in order to make it easy for aviation experts to 

apply the knowledge generated by ML models (Jacko, 2009). The aviation industry can also 

adopt these systems by learning how to use them. 

4. Benefits and applications of ML in aviation engineering 

ML is transforming aviation engineering through improvements in efficiency and safety while up-

grading decision-making processes throughout multiple industry areas. ML-driven solutions use large 

volumes of data to boost performance and minimize risks across flight operations optimization and PdM 

and cyber-security. ML analysis of live sensor streams and failure predictions teamed with automated 

air traffic control integration positions it as an essential aviation technology. The following subsections 

highlight the key benefits and diverse applications of ML in the aviation industry. 

4.1. Benefits of ML in aviation engineering 

ML contributes to aviation engineering through its ability to boost safety standards alongside op-

erational efficiency. The foremost advantage of this ability lies in its capability to examine extensive 

datasets, which proves essential in an industry that requires decision-making based on intricate and 

changing information. ML algorithms function to identify irregularities in aircraft sensor data streams 

that serve as a critical component of PdM programs. ML enables equipment failure predictions that 

reduce maintenance expenses and downtime while increasing operational safety (Shuaia et al., 2023). 

Moreover, ML makes ATM more automated. Advanced algorithms can predict flight routes, save 

fuel, and delay if necessary (Morales et al., 2017). When ML is coupled with current systems, it is easier 

to make decisions when uncertain, especially in the face of weather patterns and more passengers. The 

result is cleaner and more efficient air traffic (Garcia et al., 2021). 

Moreover, ML accelerates the monitoring and analysis in the air traffic control system. It helps in 

the validation of safety processes by searching for patterns in incident reports and operational records 

that are not readily visible (Shuaia et al., 2023).  

4.2. Applications of ML in aviation engineering 

There are several examples of ML applications in aviation engineering, which serve different use 

cases and problems. 

• PdM: It is the most effective use case of ML algorithms to prevent component failures in air-

craft.  Historical and current sensor information can be analyzed by ML to detect the possibility 

of failures and so maintain it before any problems arise (Brown et al., 2021). 

• Flight operations optimization: ML is the engine behind flight operations optimization to fore-

cast air traffic and adjust the flight times. The algorithms take the inputs, like weather condi-

tions, air traffic density, and aircraft performance, and recommend the best flight paths and 

altitudes, which will lead to improved fuel efficiency and delays (Morales et al., 2017). 

• Anomaly detection in aviation cybersecurity: With its reliance on technology, cybersecurity has 

never been more important. They also apply ML to spot and respond to problems in avionics 

equipment, which protects against cyber-attacks. Such as monitoring the data communications 

channels in real-time to flag suspicious activity (Garcia et al., 2021). 
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• Human factors assessment: ML use cases extend to human factors assessment in the aerospace 

industry, pilot performance, and workload management. ML models can inform training pro-

gram optimization and pilot decision-making by using data from the simulator and real-world 

flight conditions. 

• Air traffic control: ML is applied to make air traffic control processes efficient by automating 

operations and offering decision-support algorithms to controllers for managing the flow of air 

traffic. This makes the work of human operators less cognitive and safer (Garcia et al., 2021). 

• Aircraft design and testing: ML is also used in the designing and testing of the aircraft. When 

design engineers use ML algorithms to look at simulation and prototype performance data, they 

can make safer and more effective design decisions (Brown et al., 2021). 

5. Past projects in manufacturing companies implementing ML in aviation engi-

neering 

Leading aviation industry players, together with new aerospace firms, are pushing the application 

of ML in aviation engineering to boost operational efficiency and innovation while improving safety 

standards. The aviation and aerospace industries use ML to improve manufacturing processes along with 

PdM and autonomous operations through real-time data analytics. The practical applications of ML 

in aviation engineering are illustrated through the analysis of previous manufacturing projects while 

showing how industry progress benefits field development. By incorporating several companies, this 

study delivers diverse viewpoints about ML utilization, which covers commercial aviation alongside 

defense and space exploration activities. 
Boeing uses ML in various projects, including improving procurements with AI-driven solutions. 

The company has leveraged generative artificial intelligence (AI) to learn what shoppers spend and to 

process sourcing, which is particularly helpful for lower-value, higher-volume transactions. Similarly, 

Boeing also uses predictive data models to increase safety by anticipating risks before they become 

serious (Pahuja, 2024). 

Airbus is using ML to boost the efficiency and operations of manufacturing with their Project 

ADAM, which attempts to include ML in design and production. The project increases productivity by 

automating those processes that have traditionally been performed by humans so that engineers can be 

more involved in development (ADAM, 2020). 

Rolls-Royce applies ML with its AI-powered Aletheia Framework, which continuously processes 

the data from jet engines on the road. The AI-powered system helps engineers identify troublesome 

potential faults and operational irregularities, making maintenance scheduling and unexpected down-

time much easier. Rolls-Royce’s advanced analytics system analyzes engine data in real time and flags 

anomalies for human inspection (Pearce, 2024). 

GE Aviation uses ML to reduce engine maintenance costs and boost efficiency. They apply AI in 

devices like the Blade Inspection Tool (BIT), which helps technicians check the components more 

quickly and precisely, thus increasing the reliability of engines (Noon, 2024; ANI, 2024). They have 

been focusing on ML, which has made them one of the major AI patent holders in the aerospace space 

and is incorporating the technologies in multiple applications (Noon, 2024). 

Pratt & Whitney uses ML extensively in oil analysis systems to prevent engine problems before 

they occur. Using micro-traces of metal in the oil samples, their ML-based system predicts maintenance 

requirements for proactive decision-making and cost reductions for customers (Pratt & Whitney Cus-

tomer Service, 2022; Pratt & Whitney, 2022). They also recently partnered with a startup to build an 

AI-driven aircraft engine inspection tool called Percept that automates inspections and saves hours of 

turnaround time (Pratt & Whitney, 2023; Phadnis, 2023). 

Honeywell also uses ML on its Honeywell Forge Performance+ platform for aerospace manufac-

turing and maintenance organizations for PdM. These capabilities ensure higher operational efficiencies 

and the accurate detection of repair requirements in time to increase safety and lower costs (Rainey, 

2024; Melin, n.d.). Their AI systems enable them to automate processes and maximize the utilization of 

assets for various aerospace use cases (Rainey, 2024). 

Northrop Grumman implements ML-based systems in defense and aerospace, particularly in au-

tonomous operations and real-time data processing. Their AIs support situational awareness by analyz-

ing huge amounts of data fast, which is important for military applications and autonomous systems 
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(Northrop Grumman, 2023; Madhavan, 2019). AI adoption in unmanned aerial and ground systems 

demonstrates their commitment to advanced technology in aviation engineering (Madhavan, 2019). 

Raytheon Technologies applies ML to optimize aircraft design and maintenance procedures to in-

crease efficiency and safety. Their advanced materials studies leverage AI to discover new materials 

with improved performance in many areas of aerospace and defense. Raytheon’s emphasis on mutual 

autonomy ensures that AI serves multi-domain missions well (RTX, n.d.). 

Lockheed Martin’s ML applications help augment modeling and simulation tools for defense sys-

tems. AI is used in agile missions by initiatives such as the DARPA AIR project, providing predictive 

analytics to aircraft and military assets through the use of big data modeling (Lockheed Martin, 2024a; 

2024b). They invest in AI in an effort to keep an advantage in aerospace technologies (Lockheed Martin, 

2024a). 

SpaceX also leverages ML at every level, from the way it optimizes its flight paths to the prediction 

of repairs for spacecraft systems. They use AI-powered autopilot systems to autonomously land rockets 

and ML algorithms to improve mission performance by using real-time data to make operational deci-

sions (Malik, 2024; Saitata, 2023). The company’s adoption of AI on Starlink reflects its investment  

in technology innovation and effectiveness in space (Malik, 2024). 

Blue Origin uses ML to enhance navigation and control for its spacecraft. With artificial intelli-

gence algorithms for self-driving operations, Blue Origin will ensure its missions are safer and more 

efficient, continuing an increasing effort to include AI in aerospace engineering. They also invest in AI 

talent to emphasize their mission to transform space travel and exploration with cutting-edge technology 

(Do-Han, 2024). 

NASA is harnessing ML to support air traffic control and space operations. Their Collaborative 

Digital Departure Reroute (CDDR) software uses ML algorithms to forecast traffic patterns, improving 

runway management and reducing fuel use at large airports. These innovations reflect NASA’s contin-

ued commitment to using AI to make aircraft sustainable and efficient (Smith, 2023). 

Virgin Galactic also incorporates ML in its operation to help with microgravity experiments. Cur-

rently working on its SpaceShipTwo rocket for experiments, the company uses AI to plan and execute 

experiments in an efficient way, making it one of the leaders in the burgeoning space research market. 

Their method emphasizes the interoperability of space platforms, promoting commercial spaceflight 

innovation (Reim & Norris, 2023). 

Finally, the European Space Agency (ESA) uses ML to build performance prediction models for 

satellite navigation systems such as EGNOS. Researchers are using ML to predict performance more 

accurately, and it’s affecting industries such as aviation by assisting in the navigational processes. The 

ongoing research is another example of ESA’s dedication to space technology via AI (Gutierrez, 2024). 

6. Overview of past research on ML applications in aviation engineering 

Over the last half-decade, aviation engineering has embraced ML while researchers investigated its 

capabilities in multiple areas, including flight operations and autonomous systems, alongside PdM. This 

section employs a systematic literature review approach to present a structured and detailed overview 

of recent advancements. Figure 1 presents a quantitative breakdown of the reviewed articles, categorized 

into three primary ML applications: optimization of flight operations and ATM, enhancement of auto-

nomous flight systems and safety, and PdM and fault diagnosis in aircraft systems. 

The reviewed articles' distribution shows a progressive pattern that keeps study representation bal-

anced across all categories over time. The number of selected articles published annually rose to show 

expanding research interest in ML applications for aviation. The publication pattern increased from one 

article per category in 2019 to two in 2020 and three in 2021 and continued this growth until six articles 

per category were reached by 2024. Recent developments receive adequate representation through this 

structured selection process while maintaining balanced evaluations across multiple ML applications. 

The growing volume of publications over time demonstrates how ML's application in aviation engineer-

ing is spreading as researchers become more involved in this domain. 
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Fig. 1. Number of articles on ML applications in aviation engineering vs. year. 

6.1. ML in PdM and fault diagnosis in aircraft systems 

Table 1 below shows a quantitative distribution by publisher of the number of articles related to the 

applications of ML in PdM and fault diagnosis in aircraft systems. 

Table 1. Number of articles from different publishers reviewed on the applications of ML in PdM and fault diagnosis in aircraft 

systems. 

     Publisher      Number of articles reviewed 

IEEE 6 

Elsevier 2 

SPIE Digital Library 2 

Springer 2 

EDP Sciences 1 

IGI Global Scientific Publishing 1 

IOP Publishing 1 

MDPI 1 

SBC Digital Library 1 

SciELO 1 

Shodh Sagar International Publications 1 

SSRN 1 

Wiley 1 

Total 21 

Zhou et al. (2019) developed a fault diagnosis algorithm for aircraft engine fuel regulators by em-

ploying a Relevance Vector Machine (RVM) to create an engine inverse model that overcomes the 

nonlinearities of fuel system modeling. Their system found faults using hardware-in-the-loop simula-

tions that proved high estimation accuracy and improved system performance. Hermawan et al. (2020) 

developed a maintenance algorithm that used a mixture of Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks to compute Remaining Useful Life (RUL). This technique 

proved to be more accurate and efficient in simulations, which allowed accurate maintenance scheduling 

in real-time. Dangut et al. (2020) fixed data unbalance in PdM using soft mixed Gaussian techniques 

and the Expectation-Maximization approach. With a seven-year heterogeneous dataset, they were far 

more accurate than a standard random forest algorithm in their recall of rare faults, thus better predicting 

the failures of critical parts. 

Li (2021) compared Support Vector Machine (SVM), Random Forest, and Particle Swarm Optimi-

zation-Back Propagation (PSO-BP) algorithms for aircraft engine fault diagnosis and showed that the 

PSO-BP algorithm performed better (98.3% accuracy and shortest recognition time). This highlighted 

its value in detecting faults early and providing safer flights. Caricato et al. (2021) devoted to RUL 

estimation for aeroengines through Tree Regression, Gaussian Process Regression (GPR), and Multi-

layer Perceptron (MLP). The MLP model with a defined architecture was best at prediction performance, 
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maintaining lower maintenance and improving asset availability. Dangut et al. (2021) dealt with the 

problem of prognostication of rare failure by using a hybrid combination of Natural Language Pro-

cessing (NLP) and ensemble learning. Their model did a pretty decent job in terms of overcoming data 

imbalance problems, increasing predictive power by about 10% over the previous methods. 

Ingole et al. (2022) explored the use of various regression models, particularly Random Survival 

Forest (RSF), to enhance PdM strategies for aircraft engines. Their work showed that RSF was superior 

to the other algorithms for explained variance and absolute error, making it a more accurate approach 

for failure detection and maintenance decision-making. Sano and Berton (2022) applied deep learning 

(DL) algorithms, such as CNNs and MLPs, to aircraft maintenance for fault finding in Pressure Regu-

lated Shutoff Valves (PRSOV). They demonstrated an improvement of classification efficiency over the 

standard approach, and the MLP and CNN models have 99.62% and 99.37% accuracy, respectively, 

which clearly indicate that DL can be used to improve fault detection. Liu et al. (2022) dedicated them-

selves to using data-driven Prognostics and Health Management (PHM) technology to diagnose failures 

of the aviation electromechanical systems. With ML algorithms, using hydraulic test data, they could 

efficiently detect fault conditions, identify patterns, and inform maintenance decision support, which 

made aircraft safer to fly. 

Jia et al. (2022) developed a multi-data fusion hybrid deep fault diagnostics for aircraft sensor sys-

tems to enhance fault detection by converting sensor data to time-frequency models. Their approach, 

using DL to characterize and locate faults in aircraft attitude sensors, trumped existing diagnostic sys-

tems and made flights safer by correctly identifying sensor failures. Liu et al. (2023) focused on a ML 

clustering method for the diagnosis of multi-component degradation in aircraft fuel systems. With a new 

test rig and temporal and frequency-domain clustering features, they had greater than 99% fault detec-

tion and near-perfect severity detection. This method was remarkably reliable for identifying component 

degradation rates and was extremely useful for PdM in high-dimensional systems such as fuel tanks. Jia 

et al. (2023) used transfer learning to resolve cross-condition fault detection for aircraft Environmental 

Control Systems (ECS). They employed Transfer Component Analysis (TCA) and Joint Distribution 

Alignment (JDA), which resulted in predictive performance of 95.22% on average with unlabeled data 

and was very useful in fault diagnosis under different operating scenarios. 

Saxena and Ak (2023) studied early-warning systems for airplanes that use ML classification mo-

dels to find failures before they happen by turning data on RUL into binary classifications. Their solution 

showed a strong potential for early failure detection to allow for proactive maintenance and increase 

safety in operation. Rahamathunnisa et al. (2023) extended ML and DL into small aircraft systems, 

elaborating on their inclusion in autopilot, navigation, fault detection, and pilot aids. Their work focused 

on the generalizability of intelligent systems in the pursuit of safety, efficiency, and reliability, and it 

was backed by examples from the field and insight into implementation challenges. Yang et al. (2023) 

developed the Lightweight Spatial-Temporal Model Fusion Self-Attention Mechanism (LST-SATM-

Net) model, which combined LSTM networks with spatial attention algorithms to identify failures in 

aero-engine hydraulic systems. Their model performed much better than other systems in diagnostic 

quality and effectiveness, showing the utility of high-end DL architectures in complex aircraft. 

Lv et al. (2024) proposed an encapsulated approach involving DL for feature extraction and Markov 

models for state transition for fault diagnosis and prediction. Their approach, tested on real aircraft data, 

showed robust accuracy, recall, and F1 score increases, proving the strength and practicality of their 

methodology to augment aircraft safety and maintenance productivity. Dube (2024) was interested in 

the use of DL for PdM of aircraft engines, with a focus on how it can process big data, improve main-

tenance time, and minimize downtime. This research, through the application of DL algorithms, was 

proven to have better reliability and performance than traditional reactive and preventative maintenance 

approaches to address important safety and financial issues in aviation. Stanton et al. (2024) resolved 

the challenge of lack of available proprietary data by using the DoppelGANger model to produce syn-

thetic time-series datasets for landing gear systems of aircraft. These datasets, validated through fidelity 

metrics, allowed for more research and allowed new PdM models to be constructed without losing pro-

prietary data. 

Zhang and Du (2024) solved the problem of unbalanced operational data for aeroengines by com-

bining LSTM networks and generative adversarial networks (GANs) with human-machine interaction 

in order to detect dynamic features and minimize false alarms and missed alarms. Their approach also 

made significant diagnostic gains by simply adding dynamic mode data. Chu and Yin (2024), however, 

worked on fault diagnosis of today’s modern aircraft and showed that fusion approaches (including 
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rough set theory with Back Propagation (BP) networks) were better than single diagnostics in pinpoin-

ting the location of faults, underscoring the value of hybrid solutions. Shen et al. (2024) took it further 

to fault diagnosis, prognosis, and health management (DPHM) using a hybrid model combining nonli-

near filtering, deep neural networks (DNNs), and mixed learning methods. Their solutions enabled pre-

dictive, self-contained health monitoring, which was more reliable and minimized maintenance costs 

and downtime. 

Table 2 provides a comparative analysis of the articles reviewed above, highlighting their focus 

areas, methodologies, key findings, and unresolved challenges in the application of ML for PdM and 

fault diagnosis in aircraft systems between 2019 and 2024. 

Table 2. Comparison of reviewed articles (2019–2024) on ML applications in PdM and fault diagnosis for aircraft systems. 

Author(s) 

and year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 
Unresolved issues/gaps 

(Zhou et al., 

2019) 

Fault diagnosis for fuel 

regulators in aircraft en-

gines using RVM. 

Developed an engine inverse 

model using RVM, validated 

through hardware-in-the-loop 

simulation tests. 

High estimation accuracy 

and effective fault diagno-

sis, improving system re-

liability and enabling 

PdM. 

Complexity in modeling 

due to the strong nonlinea-

rity of engine structures 

remains a challenge. 

(Hermawan 

et al., 2020) 

PdM of aircraft engines 

using DL techniques 

(CNN + LSTM). 

Utilized CNN and LSTM for 

feature extraction and sequ-

ence learning. Simulations te-

sted RUL prediction accuracy. 

Improved RUL estimation 

accuracy and reduced 

computational time com-

pared to earlier methods. 

Further optimization of 

hybrid DL techniques for 

real-time applications is 

needed. 

(Dangut et 

al., 2020) 

Aircraft PdM modeling 

addressing data imba-

lance in heterogeneous 

datasets. 

Hybrid approach using soft 

mixed Gaussian processes and 

Expectation-Maximization, 

with seven years of real-world 

data. 

Outperformed baseline 

methods (RF algorithm), 

achieving >80% accuracy 

in predicting rare faults. 

Addressing extreme imba-

lance ratios and testing the 

method on larger datasets 

with broader systems. 

(Li, 2021) 

Comparison of ML al-

gorithms for aircraft en-

gine fault diagnosis. 

SVM, Random Forest, PSO-

BP algorithms; Artificial and 

real fault datasets with 780 

training samples and 520 

testing samples. 

PSO-BP achieved 98.3% 

accuracy, Random Forest 

85.7%, and SVM 79.2%. 

PSO-BP was faster than 

SVM. 

Lack of testing on a broa-

der range of engine types 

and real-world conditions. 

(Caricato et 

al., 2021) 

Prognostic techniques 

for aeroengine health as-

sessment and RUL esti-

mation. 

Tree Regression, GPR, MLP 

using NASA's Prognostics 

Center of Excellence datasets 

(FD001, FD002). 

MLP with 1 hidden layer 

and 5 nodes had RMSE of 

17.38 and Mean Absolute 

Error (MAE) of 12.50. 

Performance consistent 

with existing literature. 

Need for further optimiza-

tion in GPR models and 

testing on larger datasets. 

(Dangut et 

al., 2021) 

Hybrid ML model for 

rare failure prognostics 

in aircraft components. 

NLP + Ensemble Learning 

using real aircraft log-based 

dataset with rare unscheduled 

component replacements. 

Hybrid model improved 

performance by 10% in 

precision, recall, and F1-

score compared to synthe-

tic minority oversampling 

techniques. 

Further research on impro-

ving data imbalance han-

dling and real-time imple-

mentation in aircraft sys-

tems. 

(Ingole et 

al., 2022) 

Investigation of Diffe-

rent Regression Models 

For The PdM of Aircra-

ft's Engine. 

Data-driven approach using 

RSF for PdM. Various ML al-

gorithms were tested. 

Random Forest outperfor-

med other algorithms with 

the highest explained va-

riance and the lowest ab-

solute error. Confidence 

bands were added for re-

liability in maintenance 

decisions. 

Further exploration of 

other algorithms for addi-

tional predictive accuracy 

and integrating the model 

into real-time maintenance 

systems. 

(Sano & 

Berton, 

2022) 

Application of DL Mo-

dels for Aircraft Mainte-

nance. 

DL models, specifically CNN 

and MLP, were used for fault 

detection in PRSOV. 

CNN and MLP showed si-

gnificant accuracy im-

provements over baseline 

models: MLP = 0.9962, 

CNN = 0.9937, Baseline 

K-nearest neighbors 

(KNN) = 0.8788. 

Expanding the study to in-

clude more components 

and scenarios to assess the 

generalizability of the mo-

dels. 

(Liu et al., 

2022) 

Application of Data-

Driven PHM Techno-

logy in Aviation Elec-

tromechanical Systems. 

ML algorithms were used for 

fault diagnosis in electrome-

chanical systems, analyzing 

hydraulic test data. 

The developed models ef-

fectively identified abnor-

mal trends, improving ma-

intenance decision-ma-

king. The framework en-

hanced operational safety. 

Additional work on real-

time data analysis and im-

proving the scalability of 

the approach to different 

subsystems. 
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Table 2. Cont. 

Author(s) and 

year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 
Unresolved issues/gaps 

(Jia et al., 2022) 

Hybrid deep fault dia-

gnosis model for 

aircraft sensor systems, 

focusing on PdM and 

flight safety. 

Data from residual timing 

signals transformed into 

frequency and time-frequ-

ency domain representa-

tions using Fast Fourier 

transform (FFT) and S-

transform techniques. The 

DL model processes three 

inputs and uses a classifier 

for fault diagnosis. 

The hybrid model outper-

forms traditional methods, 

offering improved accu-

racy and reliability in fault 

identification. Specific per-

formance metrics not pro-

vided but noted as superior 

to traditional methods. 

Need for more detailed 

metrics and performance 

comparison across va-

rious fault types. 

(Liu et al., 

2023) 

ML-based clustering 

approach for diagno-

sing multi-component 

degradation in aircraft 

fuel systems. 

A new test rig simulating 

multi-component degrada-

tion with data analyzed in 

both time and frequency do-

mains for fault detection 

and severity classification. 

Achieved over 99% accu-

racy in fault detection and 

nearly 100% in severity 

identification. The degra-

dation levels correlated 

well with an R-square va-

lue exceeding 0.9. 

Possible expansion to 

other systems and real-

world validation beyond 

the case study. 

(Jia et al., 2023) 

Fault diagnosis of 

aircraft ECS using 

transfer learning, focu-

sing on cross-condition 

scenarios. 

TCA and JDA transfer lear-

ning techniques applied to 

unlabeled ECS data from 

different operating condi-

tions to assess fault diagno-

sis performance. 

The TCA method achieved 

95.22% predictive accu-

racy in diagnosing faults 

from unlabeled data under 

different conditions, 

outperforming traditional 

methods. 

Exploration of more 

transfer learning tech-

niques and their applica-

tion to different aviation 

systems. 

(Saxena & Ak, 

2023) 

Testing of aircraft fai-

lure using ML algo-

rithms. 

ML classification models 

for PdM in aircraft systems. 

The dataset consists of ma-

intenance and failure data 

of aircraft equipment col-

lected over a two-year pe-

riod. 

The model effectively pre-

dicts aircraft system mal-

functions, enabling timely 

warnings before failures. It 

shows potential for impro-

ving safety and mainte-

nance efficiency in avia-

tion. 

Need for more diverse da-

tasets for broader applica-

bility and improvements 

in model generalization. 

(Rahamathun-

nisa et al., 2023) 

ML and DL for Intelli-

gent Systems in Small 

Aircraft Applications. 

Integration of ML and DL 

technologies for fault detec-

tion and PdM in small 

aircraft. Data involves real-

world case studies from 

aircraft operations. 

Enhanced safety, effi-

ciency, and performance of 

small aircraft through intel-

ligent systems. Successful 

real-world implementation 

of ML/DL for fault detec-

tion and pilot support sys-

tems. 

Challenges in data robust-

ness and technical limita-

tions in implementing in-

telligent systems. 

(Yang et al., 

2023) 

The LST-SATM-net: A 

new deep feature lear-

ning framework for 

aero-engine hydraulic 

pipeline systems intel-

ligent faults diagnosis. 

LST-SATM-net framework 

integrating LSTM networks 

with Spatial Attention Me-

chanism (SATM) for fault 

diagnosis. The dataset con-

sists of various operational 

conditions and fault scena-

rios. 

The framework outper-

forms traditional fault dia-

gnosis methods with high 

accuracy, reducing diagno-

sis time and enhancing re-

liability in aero-engine hy-

draulic systems. 

Further optimization nee-

ded for real-time applica-

tion and broader valida-

tion across different ope-

rational contexts. 

(Lv et al., 2024) 

Aircraft Fault Diagno-

sis and Prediction Al-

gorithm Based on DL 

and Markov Model. 

DL for feature extraction 

and Markov model for state 

transitions. Integration algo-

rithm tested on actual 

aircraft data. 

Significant improvements 

in accuracy, recall, and F1 

score compared to single 

models. Enhanced fault 

diagnosis and prediction in 

aircraft systems. 

Further testing with 

diverse datasets and sys-

tems. Optimization of the 

integration algorithm for 

other applications. 

(Dube, 2024) 

Application of DL in 

PdM of Aircraft Engi-

nes. 

DL models analyzing large 

datasets and optimizing ma-

intenance schedules for 

aircraft engines. 

Improved reliability and 

efficiency through PdM. 

Reduced downtime and 

cost savings for airlines. 

Exploration of specific 

DL models for various 

engine types and broader 

application. 

(Stanton et al., 

2024) 

Data Augmentation for 

PdM: Synthesizing 

Aircraft Landing Gear 

Datasets. 

Utilization of the 

DoppelGANger model to 

generate synthetic time-se-

ries datasets for PdM. 

Successfully generated 

synthetic data that mimics 

real-world datasets, impro-

ving accessibility for rese-

arch. Datasets are publicly 

available for further use. 

Limited to Airbus landing 

gear data, expanding to 

other systems would im-

prove applicability. 
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Table 2. Cont. 

Author(s) and 

year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 
Unresolved issues/gaps 

(Zhang & Du, 

2024) 

Fault diagnosis met-

hods for civil aircraft, 

focusing on enhancing 

data for aeroengines 

using LSTM networks 

and GANs. 

LSTM networks, GANs for 

data enhancement, human-

machine interaction to ad-

dress data imbalance in 

aircraft systems. 

LSTM and GAN model 

successfully captured dy-

namic characteristics, re-

duced false alarms, and 

improved PdM for civil 

aircraft engines. 

The study didn't address 

scalability issues for lar-

ger aircraft systems or 

how to apply the method 

to other engine types. 

(Chu & Yin, 

2024) 

Intelligent fault diagno-

sis for aircraft systems, 

specifically focusing on 

fusion methods combi-

ning rough set theory 

and BP networks for 

improved fault location 

accuracy. 

Hybrid fusion of rough set 

theory and BP networks; 

testing with actual aircraft 

fault data. 

Fusion method outperfor-

med single methods in 

fault location accuracy. 

The hybrid approach 

combining rough set the-

ory and BP network de-

monstrated the best accu-

racy in fault diagnosis. 

Future research could 

explore further automa-

tion of fault diagnosis in 

diverse aircraft systems 

and its integration into 

real-time systems. 

(Shen et al., 

2024) 

Hybrid ML methodolo-

gies for fault DPHM in 

aircraft, focusing on in-

tegrating nonlinear fil-

tering, DNNs, etc. 

Hybrid ML approaches, 

nonlinear filtering algorithms, 

DNNs, supervised and unsu-

pervised learning algorithms, 

model-based methods. 

The hybrid methodolo-

gies led to autonomous, 

intelligent fault diagnosis 

and health management, 

improving fleet-wide mo-

nitoring capabilities, ma-

intenance practices, and 

reducing downtime. 

The paper did not focus 

on the challenges of inte-

grating these methods 

into existing industrial in-

frastructure and their real-

time applicability in hi-

ghly dynamic environ-

ments. 

6.2. ML in optimization of flight operations and ATM 

Table 3 shows a quantitative distribution by publisher of the number of articles related to the appli-

cations of ML in optimization of flight operations and ATM. 

Table 3. Number of articles on the applications of ML in optimization of flight operations and ATM by Publisher. 

Publisher Number of articles reviewed 

Elsevier 4 

IEEE 4 

ARC (Aerospace Research Central) 4 

MDPI 3 

EWA Publishing 1 

Vilnius Tech 1 

arXiv (Cornell University) 1 

SPIE Digital Library 1 

Institute for Operations Research and the Management Sciences 1 

The Japan Society for Aeronautical and Space Sciences 1 

Total 21 

Gallego et al. (2019) concerned probabilistic horizontal interdependencies between planes as a part 

of trajectory prediction to improve the accuracy of the descent phase by setting air traffic in context. 

They found that including interdependencies made a huge difference to trajectory prediction and aided 

trajectory-based computations by foreseeing conflicts. Gui et al. (2020) focused on aviation big data 

analysis with ML techniques (MLT) and LSTM networks for managing the flow of air traffic. They 

were more accurate at forecasting traffic flow along major roads and recognized periodic patterns that 

guided scheduling and airspace use decisions. Sridhar et al. (2020) provided a general discussion of ML 

use in ATM, which stressed on the data quality, feature selection and context. In case studies, they also 

described the way ML applications had grown to solve multi-objective problems and operational kinks. 

Xie et al. (2021) focused on applying ML and explainable artificial intelligence (XAI) to anomaly 

detection, risk assessment, and ATM operation monitoring. The algorithm, implemented with XGBoost 

and explainability methods Shapley Additive Explanation (SHAP) and Local Interpretable Model-

Agnostic Explanations (LIME), improved the interaction between human and machine by helping air 

traffic control operators (ATCOs) trust and comprehend system recommendations. Choi et al. (2021) 

handled trajectory forecasting in terminal airspace with a combination of ML and the Residual-Mean 

Interacting Multiple Models (RM-IMM) algorithm. This approach improved precision through histori-

cal data and real-time physics-based updates, which made significant improvements for conflict detec-

tion and scheduling. Meanwhile, Dalmau et al. (2021) used explainable ML to correct take-off times 
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and used SHAP to learn important considerations such as weather and air traffic. Their model was better 

than the old style, and it provided real-world information to allocate and schedule resources. 

Zang et al. (2022) built the Air Traffic Flow Spatial-Temporal Network Prediction (ATFSTNP) 

model that combined ResNet, Graph Convolutional Network (GCN), and LSTM to predict airport flight 

patterns using environmental considerations. Their model was much more accurate and robust at pre-

dicting flight flow and proved useful for reallocating airport resources. Wild et al. (2022) compared 

various ML algorithms like Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Ne-

twork (ANN), and SVM to predict air transport demand. ANFIS performed better than other models, 

such as multiple linear regression (MLR), and was the best at forecasting demand, which is essential for 

planning operations and making economic decisions in airlines. Xie et al. (2022) developed a hybrid AI-

based rerouting approach with the Tabu search algorithm to manage the unmanned aircraft systems 

(UAS) traffic efficiently. The work combined metaheuristic algorithms with ML to make the decisions 

in real time and developed a flexible, uncertainty-tolerant model of low-altitude traffic that was highly 

effective. 

Dhief et al. (2022) have created a ML go-around prediction system using pilot-in-the-loop simula-

tions to model go-around probability on approach. Their model was able to predict go-arounds accura-

tely and quickly, helping ATCOs plan for the best re-sequencing arrival flights. Their findings indicated 

that the model predicted more than 93% of go-around events, and that chances of landing were very 

low. Cai (2023) did a brief analysis on ML in ATM and the ways it could be leveraged to improve the 

flow of air traffic, the services, and the airspace management. This paper was very much focused on ML 

for anticipating delays, traffic, and decision-making but highlighted issues of models’ comprehensibi-

lity. Cai’s work urged further investigation of practical complexity, like traffic flows and weather. Sui 

et al. (2023a) focused on conflict resolution within ATM, which used a DRL-based technique to handle 

the air traffic conflict. Their system was based on a Markov Decision Process (MDP) and involved a 

Deep Q Network (DQN) algorithm to tune flight directions using altitude, speed, and heading control. 

Its application to simulations proved that the model could help with both flight safety and conflict reso-

lution laws. 

Wang et al. (2023) proposed a new system, RLIPA, for Air Traffic Flow Management (ATFM). 

They worked on combining RL for reward forecasts and predictive analytics for hard constraints. They 

showed that their results provided computational efficiency that was more than 10 times higher than that 

achieved by a reference approach while maintaining or improving optimal ATFM operations. It turned 

out that this methodology can also be generalized to other highly specialized multi-agent systems like 

ride-hailing or meal delivery. In contrast, Sui et al. (2023b) built a DRL tactical conflict solver (TCS) 

for air traffic controllers to solve tactical conflict. The TCS achieved a rate of 87.1% conflict resolution 

under normal traffic, but the rate dropped a bit under dense airspace. They demonstrated that DRL can 

help air traffic controllers make better decisions and burden less work, thereby increasing safety and 

efficiency. Park et al. (2023) proposed a Multi-Agent Deep Reinforcement Learning (MADRL) algo-

rithm for collaborative air transport services in Urban Air Mobility (UAM) systems. Their algorithm 

using CommNet (centralized training and distributed execution) ensured the best cooperation between 

many UAM cars. As the simulation showed, their system was way better than other systems in terms of 

service quality with equal outcomes across agents as the vehicles increased. They proved how critical 

communication can be in multi-agent systems and offered a solution to autonomous air transport in 

cities. 

Vaidyanathan et al. (2024) focused on ML-based optimization of flight planning, predicting accep-

tability of flight plans, and picking favorite routes. They used both supervised and unsupervised lear-

ning, and the data was able to show reductions in human effort, time, and expense and could provide a 

major enhancement to flight planning and operation. De Giovanni et al. (2024) used a data-driven opti-

mization of ATFM based on trajectory preferences based on traffic data. Through clustering, classifica-

tion, and mathematical programming, they were able to address ATFM problems on a massive scale, 

with a minimum of waste in terms of airspace and capacity while still keeping user preferences at the 

center. It revealed a trade-off between delays and preference prioritization that can be used to understand 

how airspace management works in practice. Taylor et al. (2024) implemented RL to build a decision 

support system for flow manager air traffic with strategy stability through dynamic constraints and per-

formance thresholds. They noted that they needed to ensure consistent recommendations over time and 

that more rigid constraints resulted in better strategy stability (although sometimes this was in tension 

with delay reduction). 
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Al-Ghzawi and El-Rayes (2024) worked on ML models for forecasting the impact of construction 

work during airport expansion on air traffic. They used several ML algorithms to compare different 

phasing of construction plans and show how these could effectively reduce flight times and improve 

airport operations through a fast analysis of alternative building plans. In contrast, Agrawal et al. (2024) 

focused on estimating Terminal Traffic Management Initiatives (TMIs) such as Ground Stops (GS) and 

Ground Delay Programs (GDP) by applying various supervised learning models, such as Logistic Re-

gression and LSTM networks. They observed that LSTM networks outperformed other models in the 

prediction of particular TMI types and were better prepared for air traffic control in the event of weather 

or capacity outages. Andreeva-Mori and Onji (2024), on the other hand, tapped into the weaknesses of 

ATFM with ML in adjusting airborne delay buffers. They found through GPR and high-fidelity traffic 

simulations that dynamically changing delay buffers could minimize ground delays and capacity loss 

without accounting for the trade-off between airborne delays and other costs. ML can be used to improve 

buffer estimation, which they also observed, although it needed to be improved. 

Table 4 provides a detailed comparison of the articles reviewed above, highlighting their focus, 

methodologies, key findings, and unresolved issues in the application of ML for flight operations opti-

mization and ATM between 2019 and 2024. 

 

Table 4. Comparison of articles published between 2019 and 2024 on ML applications in flight operations optimization and 

ATM. 

Author(s) 

and year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 
Unresolved issues/gaps 

(Gallego et 

al., 2019) 

ML approach to model 
air traffic interdepen-
dencies for trajectory 
prediction, enhancing 
flight operations and 
ATM during descent 

phase. 

Developed a probabilistic hori-
zontal interdependency measure 
between aircraft. Used ML algo-

rithms to analyze time separations 
and vertical profiles of flight tra-
jectories. Utilized a horizontal in-
terdependency matrix (HIM) to 
quantify interdependencies be-

tween pairs of aircraft. 

The interdependency 
measure identified po-

tential conflicts between 
aircraft in advance, vali-
dated by air traffic con-
trol actions. Including 

surrounding air traffic as 
a factor significantly 

affected the location of 
the top of descent. 

Future research could 
focus on improving the 

framework for more 
complex air traffic sce-
narios and operational 

contexts. 

(Gui et al., 

2020) 

ML for enhancing 
ATFM, optimizing 

flight scheduling strate-
gies, and improving 
airspace utilization 

through aviation big 
data analysis. 

Created an aviation big data plat-
form integrating automatic depen-

dent surveillance-broadcast 
(ADS-B) data for real-time air 
traffic monitoring. Employed 
LSTM networks to predict air 

traffic flow, considering abnormal 
factors in traffic control. Dataset 
included air traffic from routes 
like Beijing-Wuhan, Shanghai-

Tianjin, Nanjing-Beijing, and Gu-
angzhou-Shanghai. 

LSTM-based model 
outperformed traditional 

methods in predicting 
traffic flow. Identified 
periodic patterns in air 
traffic, with clear peaks 
and valleys throughout 

the day. 

Future work could 
explore more advanced 
models for predicting 

abnormal air traffic flow 
and better integrate 

different models to en-
hance prediction accu-

racy. 

(Sridhar et 

al., 2020) 

Application of MLT in 
ATM to enhance deci-
sion-making and multi-
objective scenario han-

dling. 

Review of case studies from the 
authors' experience over three de-
cades. Focused on data and fea-
ture selection in ATM applica-

tions of MLT. Discussed challen-
ges in data quality and understan-
ding physical aviation operations 
for successful implementation. 

MLT can enhance opera-
tional efficiency and de-
cision-making in ATM, 
but depends on high-qu-
ality data, appropriate 
feature selection, and 

understanding of physi-
cal aviation contexts. 

Challenges in data qua-
lity, feature selection, 

and complex operational 
contexts need further 

exploration to fully un-
lock the potential of 

MLT in ATM. 

(Xie et al., 

2021) 

Explanation of ML so-
lutions in ATM, focu-
sing on anomaly detec-

tion, risk prediction, 
and operational risk 

monitoring using 
XGBoost. Emphasis on 

XAI. 

XGBoost algorithm for ML-based 
risk prediction, SHAP and LIME 

for explainability techniques. 
Aviation occurrences and meteo-
rological databases used for trai-

ning the model. 

ML-based risk-predic-
tion tool for ATM with 

explainable AI enhances 
ATCOs' trust in the sys-
tem. The study highligh-
ted the potential for XAI 
in improving human-ma-
chine interaction and its 
broader applications in 
performance-driven au-

tonomy. 

Potential for further re-
search on improving in-

tegration of XAI for 
fully autonomous sys-

tems in ATM. 
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Table 4. Cont. 

Author(s) 

and year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 
Unresolved issues/gaps 

(Choi et al., 

2021) 

Hybrid ML and estima-
tion-based flight trajec-
tory prediction for im-
proving ATM in termi-

nal airspace. 

Combination of ML (using hi-
storical surveillance data) and 

physics-based estimation 
(RM-IMM algorithm) for tra-

jectory prediction. Real air 
traffic surveillance data used 

for testing. 

Hybrid approach significan-
tly improves trajectory pre-
diction accuracy compared 
to existing ML algorithms. 

The framework enhances the 
safety and efficiency of air 

traffic operations in terminal 
airspace. 

Potential application in 
non-terminal airspace 

and real-time implemen-
tation. 

(Dalmau et 

al., 2021) 

Explainable ML appro-
ach to improve take-off 

time predictions for 
optimized flight opera-

tions and ATM. Va-
rious ML algorithms 

(decision trees, ensem-
ble methods) applied to 

historical flight data. 
SHAP for explainabi-
lity. Dataset included 
numerous flights with 

factors like weather, air 
traffic, and aircraft cha-

racteristics. 

Various ML algorithms (deci-
sion trees, ensemble methods) 

applied to historical flight 
data. SHAP for explainability. 

Dataset included numerous 
flights with factors like wea-
ther, air traffic, and aircraft 

characteristics. 

Significant improvement in 
predicting take-off times 
with enhanced accuracy. 

SHAP-based explainability 
provides insights into the 

factors influencing predic-
tions, which aids in trust and 

decision-making. Results 
contribute to optimized 

scheduling and resource al-
location in airport opera-

tions. 

Need for extending the 
approach to other areas 

of flight scheduling bey-
ond take-off times. 

(Zang et al., 

2022) 

Flight flow prediction 
in airport networks, 

optimizing operations 
and ATM. 

DL model (ATFSTNP), inte-
grating ResNet, GCN, and 

LSTM. 

ATFSTNP model outperfor-
med traditional models, 
especially under varying 

weather conditions. Demon-
strated strong robustness and 
accuracy in predicting flight 

flow. 

Limited generalization 
to non-Chinese airports; 
further testing required 
in diverse real-world 

environments. 

(Wild et al., 

2022) 

ML for air transport de-
mand forecasting and 
operational planning. 

Evaluation of ANN, ANFIS, 
Genetic Algorithm (GA), 

SVM, Regression Tree (RT), 
and MLR using Root Mean 

Squared Error (RMSE) and R² 
metrics. 

ANFIS performed best with 
the lowest RMSE. ANN fol-

lowed closely. RT model 
showed poor performance. 

Need for more real-
world data for valida-

tion; potential improve-
ment in models for lon-

ger-term forecasting. 

(Xie et al., 

2022) 

Hybrid AI-based dyna-
mic rerouting method 

for low-altitude air traf-
fic operations, focusing 

on UAM and UAS. 

Hybrid approach using Tabu-
search algorithm for rerouting 
and ML for real-time optimi-

zation. 

Uncertainty-resilient frame-
work improved Demand-Ca-
pacity Balancing (DCB) and 
traffic management. Promi-
sing for UAM integration. 

Scalability in highly 
congested airspaces; in-
tegration with existing 
air traffic control sys-
tems still requires refi-

nement. 

(Dhief et al., 

2022) 

ML model for predic-
ting go-around probabi-
lities to enhance ATM. 

Pilot-operated flight simulator 
for data collection under vary-
ing visibility conditions; real-

time go-around probability 
prediction model. 

The model's predictions clo-
sely matched computed pro-

babilities, showing >93% 
go-around likelihood when 

initiated and accurate predic-
tion of low go-around chan-
ces during successful lan-

dings. 

Limited focus on vary-
ing air traffic conditions 
and non-visibility-rela-

ted factors that may 
affect go-around events. 

(Cai, 2023) 

Overview of ML appli-
cations in ATM, inclu-
ding delay prediction, 
traffic flow analysis, 

and decision-making 
improvement. 

Review of existing ML rese-
arch and algorithms like ran-

dom forests and SVMs. 

ML has substantial potential 
for improving ATM by opti-
mizing traffic flow, enhan-
cing safety, and increasing 
efficiency. Identified rese-

arch areas include ATFM, 
Air Traffic Services, and 
Airspace Management. 

Need for more research 
into model interpretabi-
lity ("black box" nature 
of ML) and incorpora-
ting real-world factors 
like weather and pilot 

skills. 

(Sui et al., 

2023a) 

Conflict resolution stra-
tegy in ATM using 
DRL for altitude, 

speed, and heading ad-
justments. 

MDP framework; DQN algo-
rithm for agent training. 

DRL-based approach effec-
tively resolved conflicts with 

accurate decision-making 
for altitude, speed, and he-
ading adjustments, enhan-
cing flight safety. Results 

were aligned with air traffic 
control regulations. 

Future work needed to 
explore scalability and 
real-time adaptation in 
complex airspace envi-

ronments. 
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Table 4. Cont. 

Author(s) 

and year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 
Unresolved issues/gaps 

(Wang et al., 

2023) 
RLIPA for ATFM 

Integrated RL with pre-
scriptive analytics for deci-

sion-making. Numerical expe-
riments and a real case study 

for validation. 

RLIPA improved computa-
tional efficiency by over 10 
times and maintained or im-
proved optimality in ATFM. 

General applicability 
across multiple agent-

based systems (ride-hai-
ling, food delivery). 

(Sui et al., 

2023b) 

TCS for Air Traffic 
Controllers Using 

DRL. 

DRL-based TCS using actor-
critic approach. Simulated 

conflict scenarios with ATCO 
input for conflict resolution. 

Conflict resolution rate of 
87.1%, reduced to 81.2% 

with 1.4x increased airspace 
density. 

Impact of increased air-
space density on perfor-

mance, scalability of 
TCS in larger systems. 

(Park et al., 

2023) 

Multi-Agent DRL for 
Cooperative Air Trans-

portation in Autono-
mous UAM. 

Multi-agent DRL with Com-
mNet for cooperative deci-

sion-making. Data-intensive 
simulations using vertiport 
maps and UAM specifica-

tions. 

Algorithm outperformed 
existing methods in service 
quality, ensuring equitable 
performance among agents. 

Scalability and real-
world deployment of 

MADRL in larger, more 
dynamic systems. 

(Vaidyana-

than et al., 

2024) 

Enhancing flight plan-
ning efficiency through 
ML by predicting flight 

plan acceptance and 
identifying preferred 

routes. 

MLT, including supervised 
and unsupervised learning. 
The study uses operational 

flight planning data for model 
development. 

Reduction in human effort, 
cost, and time in generating 
flight plans. The ML models 

are expected to optimize 
flight operations and ATM. 

Models to be deployed 
in operational environ-
ments, potentially im-

proving flight plan ac-
ceptance rates. 

(De Giovanni 

et al., 2024) 

Data-driven optimiza-
tion for ATFM, focu-
sing on trajectory pre-
ferences and resolving 
demand-capacity imba-

lances through ML. 

ML clustering and classifica-
tion techniques. The dataset 
used is from Eurocontrol, 

involving over 32,000 flights. 
A mathematical programming 
model was used to resolve de-

mand-capacity imbalances. 

Successfully solved the lar-
gest ATFM instances with 
short computational times. 
The trade-off between user 
preferences and delays was 

identified, providing insights 
into optimizing ATM. 

Further exploration of 
the trade-offs between 

user preferences and de-
lays, and the practical 
deployment of the pro-
posed models in real-
world ATM systems. 

(Taylor et al., 

2024) 

Using RL for ATFM, 
focusing on strategy 

stability, delay reduc-
tion, and flight pre-

dictability in managing 
air traffic. 

The research proposes a deci-
sion support system using RL 
with dynamic constraints and 
performance thresholds. Eva-

luation was done using an 
agent's reward function and 

stability measures. 

The more restrictive set of 
constraints improved stra-
tegy stability and reduced 

delays. The performance im-
provement threshold did not 
significantly impact delay 

reduction but enhanced stra-
tegy stability. A trade-off 

between optimizing for de-
lay and ensuring predictabi-

lity was observed. 

Further refinement of 
the constraints and 

thresholds, and a deeper 
understanding of their 
impact under varying 
conditions (e.g., diffe-
rent traffic volumes or 
operational scenarios). 

(Al-Ghzawi 

& El-Rayes, 

2024) 

ML for predicting the 
impact of construction 
activities on air traffic 
operations during air-
port expansion pro-

jects. The research fo-
cuses on optimizing 
flight operations and 
ATM during airport 

expansions. 

Data collection and prepro-
cessing; 5 ML models were 
developed to predict the im-
pact of construction on flight 

ground movement times. 

Five models were develo-
ped, compared, and evalua-
ted to accurately predict the 
impact of construction ac-

tivities on airport operations. 
It helps in evaluating alter-
native construction phasing 
plans to minimize delays. 

There is room to further 
improve the models and 
explore additional con-
struction scenarios or 

airport conditions. 

(Agrawal et 

al., 2024) 

Predicting Terminal 
TMIs using ML to opti-
mize ATM efficiency 
based on weather and 

airport conditions. 

Logistic Regression, Random 
Forest, XGBoost, and LSTM 
networks were applied using 
three years of historical data 

from Newark airport. 

Random Forest and XGBo-
ost are effective for predic-
ting TMI necessity, while 

LSTM outperforms them in 
predicting specific TMI ty-
pes due to its sequence lear-

ning capability. 

Future studies could 
explore other predictive 
models and improve the 

TMI prediction accu-
racy with better feature 

engineering. 

(Andreeva-

Mori & Onji, 

2024) 

Optimizing airborne 
delay buffers in ATFM 

under uncertainties 
using ML to select dy-
namic buffers for im-

proved efficiency. 

High-fidelity traffic simula-
tions for 162 days of traffic 

data. The GPR model predic-
ted delays based on projected 

traffic. 

The optimal buffer reduces 
ground delay and capacity 
loss while increasing air-
borne delay. The optimal 
buffer varies based on the 

weight of capacity loss, with 
an ideal buffer range be-

tween 5 to 8 minutes. 

The challenge in 
achieving optimality 

and estimation accuracy 
with ML for dynamic 

buffer selection. 
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6.3. ML in enhancement of autonomous flight systems and safety 

Table 5 shows a quantitative distribution by publisher of the number of articles related to the ap-

plications of ML in enhancement of autonomous flight systems and safety. 

Table 5. Number of articles on the applications of ML in enhancement of autonomous flight systems and safety by Publisher. 

Publisher Number of articles reviewed 

IEEE 5 

Springer 4 

arXiv (Cornell University) 2 

IOP Publishing 2 

AnaPub Publications 1 

ARC (Aerospace Research Central) 1 

Elsevier 1 

Francis Press 1 

Frontiers 1 

Preprints.org 1 

River Publishers 1 

Vertical Flight Society 1 

Total 21 

Bati and Withington (2019) came up with a fully-fledged risk metric for the National Airspace 
System (NAS), employing MLT for the airport surface environment. Their study showed that traditional 
safety indicators were not enough and that incorporating severity in incident analysis could give a bro-
ader picture of aviation risks and, therefore, be a more valuable safety surveillance tool. Fremont et al. 
(2020) addressed the reliability of autonomous aircraft taxiing systems by applying the VerifAI toolkit 
for formal analysis and retraining of neural networks. They have an industrial case study with Boeing’s 
autonomous taxiing system, proving that ML systems could be falsified and debugged extensively to 
improve the system’s reliability and effectiveness in the field. Puranik et al. (2020), which was focused 
on ML prediction of safety-relevant landing parameters in approach. With an offline-online approach, 
they were able to accurately predict the actual airspeed and ground speed far better than previously 
known, and this allowed real-time decision-making and risk identification during key flight phases. 

Jagannath et al. (2021) emphasized the combination of DL and RL for increased autonomy of UAS. 
They investigated how to use DL for computer vision tasks such as object detection and navigation and 
RL for real-time decision-making to allow UAS to perform better in situations where wireless connec-
tivity is unreliable. The work proved useful for navigating obstacles in tactical and rescue missions, 
although it recognized the continuing problems with safety, technical constraints, and regulatory issues. 
Lee et al. (2021) focused on improving aviation safety by developing a data-driven system for real-time 
health monitoring of commercial aircraft using deep autoencoders. They scoured for flight disruptions 
and aircraft upsets, which were early warning signs of crash. Through historical flight data, the system 
sent out early warnings for pilot status and for better flight management. The experiments confirmed 
that the autoencoder-based approach was significantly better than the conventional statistical detection, 
making it a useful piece of equipment in the wider aviation safety domain. In contrast, Arnez et al. 
(2021) improved the strength of DNNs for aerial navigation using input uncertainty in Bayesian DL. 
Their approach centered around uncertainty-as-input processing (a key requirement when working with 
Out-of-Distribution (OoD) data and robust system performance in safety-critical workloads). They fo-
und through experiment that this strategy improved navigation policies, particularly in the presence of 
uncertainty, and demonstrated that it can improve the safety and stability of autonomous flight systems.  

Wang et al. (2022) proposed a DRL system for better explainability and safety in self-driving air 
travel, especially in hostile environments. Their distributed model, which based safety awareness on the 
separation of decision-making efficiency, led to better simulation conflict resolution and an open DRL 
controller. In contrast, Cofer et al. (2022) focused on a neural network-based collision avoidance system 
built into Boeing’s testbed planes. They used run-time guarantees and formal procedures to monitor for 
safety compliance, and they finally carried out a flight test to validate the system’s ability to intervene 
in cases of safety breaches. Salvador (2022) described how it was difficult to make ML compliant and 
safe for eVTOL aircraft. The research emphasized ML’s capabilities to process large quantities of data, 
predict failures, and reduce human error in favor of fully autonomous functions, backed by such tech-
nology as digital twins and advanced networks. 

Mohammed et al. (2022) looked at various ML solutions in aerospace, including PdM, fuel savings, 
and autonomous air vehicles, with safety and reliability as top priorities. They showed how ML could 
increase productivity (especially in the context of COVID-19) and how AI-based data analytics helped 
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boost the resilience of the industry. Yue et al. (2023) focused on RL for multi-unmanned aerial vehicle 
(UAV) autonomous decisions and proposed the Transfer-Safe Soft Actor-Critic (TSSAC) algorithm. 
They found that TSSAC was very successful (96%) and kept to safety parameters, which, compared 
with older algorithms such as Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO), is better 
on both sides of the fence. Katta and Viegas (2023) developed a small ML-based onboard fault detection 
system for drones with a 0.4% false positive rate and a 43% reduction in computation cost. This work 
showed up reliably identifying physical faults while alerting model unreliability to operators for inte-
rvention. 

Luo and Chen (2023) specialized in using LSTM networks for monitoring and correcting errors 
onboard an aircraft in real time and automated warnings to support pilot decision-making and safety in 
flight. Their system included a real-time flight data processing module, and this helped with adaptive 
decision-making, demonstrating the possibilities of LSTM networks for pilot support and drones. In 
contrast, Haughn et al. (2023) used DRL for gust mitigation on UAVs, reducing gust impact by 84%. 
Their experiment demonstrated sensor efficiency (decreasing the sensor dependence at no loss of per-
formance), proving that RL can be used for UAV operational safety in adverse environments. Helgo 
(2023) extended ML to PdM and flight data processing with LSTMs, CNNs, autoencoders, and more 
for diagnostic accuracy and efficiency. Her research underscored the importance of feature selection and 
flight data tracking to optimize safety and maintenance. 

Chen et al. (2024) involved obstacle avoidance in UAVs with a DRL algorithm coupled to depth 
camera information and Voronoi diagrams for streamlined path planning and dynamic obstacle detec-
tion. The approach proved more efficient in choosing a course, flight time, and safety by minimizing 
obstacle detection. Gavra and Kampen (2024) introduced a hybrid Safety-informed Evolutionary Rein-
forcement Learning (SERL) algorithm for fault-tolerant flight control. Combining DRL and neuro-evo-
lution, they crafted more efficient control policies, achieved better tracking under all test conditions, and 
were robust against faults and changing conditions that underpinned smoother, more stable autonomous 
behavior. Khelifi et al. (2024) dealt with rotorcraft safety using a low-cost DL system that automated 
cockpit data collection using standard cameras. Their solution made real-time gauge detection, classifi-
cation, and reading inference possible, supporting data-driven safety and cost-effective monitoring.  

Jin et al. (2024) devoted to the use of AI in tandem with human-computer interaction to track pilot 
fatigue and prevent accidents through the design of a flexible system that adapts to cognitive load. The 
paper emphasized AI for better human-machine cooperation and error-minimizing under pressure. Liu 
et al. (2024) tested SVM-based hazardous flight weather prediction based on weather forecasting (based 
on the weather data), such as storms and turbulence. Their model was very accurate, and this increased 
early warning that is so important to flight safety as air transport becomes increasingly sophisticated. 
Lastly, Hu et al. (2024) used BP neural networks to estimate horizontal tail flight loads in large UAVs 
and emphasized reliable load prediction for reliability and safety. The scientists gained high accuracy 
through the data quality improvement, model tuning, and validation. 

Table 6 provides a comparative analysis of the articles reviewed above, highlighting their study 
focus, methodologies, key findings, and the unresolved challenges in applying MLT to enhance autono-
mous flight systems and safety. 

 

Table 6. Comparative analysis of articles published between 2019 and 2024 on ML applications in enhancing autonomous 

flight systems and safety. 

Author(s) 

and year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 
Unresolved issues/gaps 

(Bati & 

Withington, 

2019) 

Development of a ML-ba-

sed risk metric for safety 

performance in the NAS. 

Utilized MLT to analyze data 

on airport surface incidents 

and accidents; severity measu-

res incorporated. 

The new metric offers a 

more holistic assess-

ment of safety, provi-

ding insights beyond 

traditional incident-fo-

cused metrics. 

Further validation across 

different airport environ-

ments and integration 

with real-time safety 

systems. 

(Fremont et 

al., 2020) 

Enhancing autonomous 

flight system safety and 

performance using the 

VerifAI toolkit for formal 

analysis of neural ne-

tworks. 

The VerifAI toolkit used for 

formal analysis; industrial 

case study of autonomous 

aircraft taxiing system by 

Boeing; falsification and re-

training processes. 

Improved the reliability 

of the autonomous ta-

xiing system by identi-

fying failure cases and 

retraining the neural ne-

twork. 

Further exploration of 

edge cases and integra-

tion with other autono-

mous flight system com-

ponents. 
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Table 6. Cont. 

Author(s) 

and year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 

Unresolved  

issues/gaps 

(Puranik et 

al., 2020) 

Prediction of safety-critical 

landing metrics (airspeed and 

ground speed) during the 

approach phase in aviation. 

Data from on-board recor-

ders; Random Forest re-

gression algorithm for pre-

dicting landing metrics; of-

fline-online Framework. 

Achieved robust predictive 

performance, with root 

mean square errors of 2.62 

knots (airspeed) and 2.98 

knots (ground speed). 

Potential adaptation to 

more diverse aircraft 

and operating condi-

tions for broader ap-

plicability. 

(Jagannath et 

al., 2021) 

Enhancing autonomy in UAS 

through DL and RL. 

DL and RL for computer 

vision, simulation, and pro-

totyping. 

UAS autonomy improved 

through ML; DL used for 

object detection, RL for 

control; simulation plat-

forms suggested. 

Technical hurdles, sa-

fety concerns, regula-

tory issues, real-world 

deployment. 

(Lee et al., 

2021) 

Data-driven aircraft health 

monitoring for detecting off-

nominal flight operations. 

Deep autoencoder for real-

time detection, using histo-

rical flight datasets. 

Early alerts for upset pre-

cursors improve pilots’ si-

tuational awareness and 

flight safety; real-time de-

tection tested with acci-

dent scenario. 

Need for broader data-

set application, further 

refinement of the mo-

nitoring system. 

(Arnez et al., 

2021) 

Incorporating input uncerta-

inty in Bayesian DL for aerial 

navigation. 

Bayesian DL method to in-

corporate input uncerta-

inty, experimental trias. 

Improved robustness in 

navigation policies when 

handling OoD scen arios. 

Need for further 

testing in diverse real-

world applications. 

(Wang et al., 

2022) 

Focus on improving autono-

mous flight systems by enhan-

cing conflict resolution, expla-

inability, and safety in air traf-

fic control designs, particu-

larly under adversarial attacks. 

Developed a DRL control-

ler with a safety-awareness 

and efficiency framework; 

simulated experiments 

were conducted. 

Results showed significant 

improvements in perfor-

mance for free-flight tasks 

and enhanced explainabi-

lity in decision-making. 

Introduced an adversarial 

attack strategy revealing 

DRL’s safety limitations. 

Further exploration of 

DRL’s limitations un-

der adversarial condi-

tions, scalability of 

decentralized systems. 

(Cofer et al., 

2022) 

Integration of ML in safety-

critical systems, specifically 

for collision avoidance in au-

tonomous aircraft. 

Neural network-based col-

lision avoidance system in-

tegrated with Boeing’s Au-

tonomy Testbed Aircraft; 

real-time monitoring and 

flight test demonstration. 

Successful flight test de-

monstrated real-time mo-

nitoring of the neural ne-

twork, ensuring com-

pliance with safety proto-

cols. Run-time assurance 

enabled effective safety in-

terventions. 

Scalability and adap-

tability to various 

aircraft systems and 

real-time operation 

under varying condi-

tions. 

(Salvador, 

2022) 

Enhancing the reliability and 

safety of eVTOL aircraft 

through ML to predict system 

failures and reduce human er-

ror. 

ML applied to data genera-

ted by eVTOL systems; 

explored integration with 

Digital Twins and 6G ne-

tworks. 

ML enhances reliability by 

predicting system failures 

and reducing human error 

in eVTOLs. The potential 

for fully autonomous ope-

rations in the future was 

highlighted. 

Challenges in integra-

ting ML with emer-

ging technologies, de-

aling with increased 

air traffic in urban 

environments. 

(Mohammed 

et al., 2022) 

Application of AI/ML in aero-

space, focusing on autono-

mous flight systems, fuel effi-

ciency, smart maintenance, 

ATM, pilot training, passenger 

and threat identification, re-

mote sensing, autonomous ae-

rial vehicles, and safety in ae-

rospace. 

Review of various AI/ML 

applications in aerospace. 

AI/ML enhances safety, 

fuel efficiency, ATM, and 

pilot training; improves 

autonomous aerial vehicle 

systems; plays a critical 

role in safety. 

Limited research on 

fully autonomous dro-

nes and aircraft; po-

tential concerns over 

integration challenges. 

(Yue et al., 

2023) 

Safe decision-making in multi-

UAV systems using RL to im-

prove safety and training effi-

ciency in decision-making 

processes. 

Developed TSSAC algo-

rithm, integrating constra-

ined MDPs. Simulated 

with UAVs performing 

different roles. 

TSSAC demonstrated a 

96% success rate while 

maintaining safety; better 

than PPO, SAC, and other 

algorithms in balancing sa-

fety and success. 

Further exploration of 

TSSAC's adaptability 

in real-world scena-

rios; integration of 

more diverse UAV ty-

pes. 

(Katta & Vie-

gas, 2023) 

Onboard fault detection in au-

tonomous UAVs using ML to 

enhance safety with minimal 

processing. 

Feature selection and clas-

sification assessment using 

a multi-view rationale for 

UAV sensors. Tested on a 

real quadcopter UAV. 

Reduced false-positive rate 

to 0.4%; computational 

costs reduced by 43%; sys-

tem alerted operators when 

model was unreliable. 

Need for testing with 

a wider range of 

UAVs; more diverse 

fault scenarios for 

comprehensive valida-

tion. 
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Table 6. Cont. 

Author(s) 

and year 

Study focus and  

application 
Methodology and dataset 

Key findings and  

metrics 

Unresolved  

issues/gaps 

(Luo & Chen, 

2023) 

Enhancing aircraft safety and 

autonomous flight assistance 

using DL, specifically LSTM 

networks. 

LSTM network for real-

time monitoring of aircraft 

status, error correction, and 

autopilot functions. Real-

time flight data processing 

module. 

Automated early warning, 

error correction, and assi-

sted driving features deve-

loped. Improved decision-

making and flight safety. 

Need for broader vali-

dation in diverse flight 

conditions and more 

comprehensive data 

integration. 

(Haughn et 

al., 2023) 

Enhancing gust alleviation in 

UAVs using DRL, enabling 

operation with fewer sensors 

in urban areas. 

DRL to develop an autono-

mous gust alleviation con-

troller for a camber-

morphing wing. Real-time 

pressure signal analysis. 

84% reduction in gust im-

pact, fewer sensors needed 

without compromising 

performance, increased 

UAV operational effi-

ciency. 

Further exploration of 

sensor efficiency and 

robustness in highly 

variable urban envi-

ronments. 

(Helgo, 

2023) 

Enhancing aircraft mainte-

nance and flight data analysis 

using ML and DL algorithms. 

Deep Autoencoders, Deep 

Belief Networks, LSTMs, 

CNNs for feature extrac-

tion, PdM, and flight data 

monitoring. 

Improved aircraft safety 

and operational efficiency 

through PdM, better fea-

ture selection, and unsafe 

behavior detection. 

Integration of various 

DL architectures for 

complex, real-world 

scenarios in aviation. 

(Chen et al., 

2024) 

Obstacle Avoidance for UAV 

Flight Safety. 

DRL, Buffered α-Predic-

ted-Vector Weighted Vo-

ronoi Diagram 

(BαPVWVD), Dynamic 

Graph Generation. 

Improved obstacle avoi-

dance, optimized flight di-

stance, safer path selec-

tion. 

Integration of more 

complex environ-

ments and real-time 

dynamic changes. 

(Gavra & 

Kampen, 

2024) 

Evolutionary RL for Fault-To-

lerant Flight Control. 

SERL, High-fidelity Non-

linear Aircraft Model. 

Better tracking perfor-

mance, robust fault tole-

rance, smoother agent ac-

tion. 

Real-world applicabi-

lity in highly variable 

conditions, further re-

finement of hybrid 

methods. 

(Khelifi et 

al., 2024) 

Rotorcraft Flight Data Monito-

ring with DL. 

DL Framework, Curated 

Dataset for Rotorcraft Coc-

kpits. 

Improved safety through 

automated flight data ana-

lysis, enhanced gauge de-

tection and reading infe-

rence. 

Further dataset valida-

tion, application to 

different aircraft ty-

pes. 

(Jin et al., 

2024) 

Integration of AI in flight sa-

fety for fatigue monitoring and 

risk mitigation in autonomous 

flight systems. Focus on co-

gnitive load and decision-ma-

king improvements. 

Human-machine interac-

tion, cognitive load mana-

gement, adaptive intelli-

gent cabin systems, and 

human factors considera-

tion. No specific dataset 

provided. 

Improved safety through 

better human-machine in-

teraction, cognitive load 

management, adaptive sys-

tems, and AI to reduce hu-

man error. 

Need for further inte-

gration of human fac-

tors throughout sys-

tem design; Real-time 

AI system deve-

lopment for complex 

flight operations. 

(Liu et al., 

2024) 

Prediction of dangerous flight 

weather using ML, specifi-

cally SVMs, for aviation sa-

fety. 

SVM models with radial 

basis function (RBF) as 

kernel; Historical meteoro-

logical data such as tempe-

rature, humidity, wind 

speed, and direction from 

weather stations. 

Successfully predicted ha-

zardous flight weather 

conditions. Enhanced sa-

fety through early warning 

systems for dangerous 

weather conditions. 

Further exploration of 

other MLT for impro-

ving prediction accu-

racy in complex me-

teorological environ-

ments. 

(Hu et al., 

2024) 

Prediction of flight loads in 

large UAVs using ML, focu-

sing on improving flight safety 

and reliability in autonomous 

flight systems. 

BP neural networks to pre-

dict shear, bending mo-

ment, and torque based on 

flight parameters. Data 

processing and optimiza-

tion through error analysis. 

Dataset not provided. 

Accurate prediction of 

flight loads, optimization 

of BP neural network, er-

ror analysis, and validation 

through test and training 

sets. 

Model performance in 

real-world applica-

tions beyond the trai-

ning/test set; Potential 

for further optimiza-

tion in large UAV 

systems. 

7. Conclusions 

In the article based on the ML applications for aviation engineering, there are some of the major 

conclusions and lessons for the sector. ML also has the capability to assist in making decisions better, 

such as in ATM. Through various ML models, scientists were able to perform better flight operations, 

better control air traffic, and have less delay, essential to keep aircraft safe and efficient. It is a break-

through that ML can anticipate delays and traffic congestion. There are also studies showing high suc-

cess in forecasting go-arounds and terminal traffic control programs, which can greatly assist air traffic 

controllers. With the addition of ML to the processing of air traffic flow control, computational 
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efficiency improved to greater than a factor of 10 (for some methods). Not only does this efficiency 

increase the capability of the aircraft, it reduces pressure on the controllers and ultimately increases 

safety. Even with the progress, there are still issues such as ML models being interpretable and adapting 

to real-world circumstances like traffic patterns and weather conditions. These issues need to be investi-

gated, and ML in the aviation system needs further investigation. As these results of this review show, 

ML could not only be used for air traffic control but also for other fields of aviation engineering like 

PdM and fault identification in aircraft systems. That looks like an opportunity for the future of ML use 

in the aviation industry. The paper summarizes the profound changes that ML can make to aviation 

engineering, both in terms of increasing the efficiency, safety, and decision-making and in terms of the 

research work required to overcome the existing issues. 
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Przegląd Zastosowań Uczenia Maszynowego w Inżynierii Lotniczej 

Streszczenie 

W niniejszym artykule przeglądowym przedstawiono w jaki sposób uczenie maszynowe (ang. machine lear-

ning - ML) przekształciło wiele aspektów inżynierii lotniczej. Artykuł przedstawia znaczny postęp w optyma-

lizacji operacji lotniczych i zarządzania ruchem lotniczym poprzez preskryptywną analizę opartą na uczeniu 

się przez wzmacnianie i techniki głębokiego uczenia się ze wzmocnieniem stosowane do rozwiązywania kon-

fliktów. Badanie podkreśla w jaki sposób ML decyduje o wydajności operacyjnej poprzez szybsze procesy 

obliczeniowe i lepsze zdolności podejmowania decyzji przez osoby kontrolujące ruch lotniczy. Artykuł anali-

zuje, w jaki sposób wiodące firmy, takie jak SpaceX i Raytheon, wykorzystują technologię ML do ulepszania 

procesów produkcyjnych, w tym utrzymania predykcyjnego i rozwoju systemów autonomicznych. Omówiono 

również przeszkody we wdrażaniu ML, w tym interpretowalność modelu, oraz wskazano dalsze wymagania 

badawcze dotyczące dostosowywania się ML do rzeczywistych problemów, takich jak zmieniające się natęże-

nie ruchu i wahania pogody. Ogólnie rzecz biorąc, wyniki badań omówione w artykule przedstawiają w jaki 

sposób technologia ML może wspomagać inżynierię lotniczą poprzez udoskonalenie norm bezpieczeństwa, a 

także wydajność operacyjną i procesową. 

 

Słowa kluczowe: uczenie maszynowe, inżynieria lotnicza, utrzymanie predykcyjne, zarządzanie ruchem lotni-

czym, integracja 
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