On the Derivative of a Polynomial

Vinay Kumar Jain

AbSTRACT: For an arbitrary polynomial $P(z)$, let $M(P, r)=$ $\max _{|z|=r}|P(z)|$ and $m(P, r)=\min _{|z|=r}|P(z)|,(r>0)$. For a polynomial $p(z)=\sum_{j=0}^{n} a_{j} z^{j}=a_{n} \prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$, of degree n, having all its zeros in $|z| \leq k,(k \geq 1)$, with a zero of order $s,(s \geq 0)$, at 0 and
$F_{0}, F_{1}, F_{2}, G_{n-s}, F_{3}, F_{4}, H_{n-s}, F_{n-s}, B_{0}, B_{1}, E_{n-1}, B_{2}, B_{3}, D_{n-1}$ and B_{n-1},
as in Theorem, we have obtained a refinement

$$
\begin{aligned}
M\left(p^{\prime}, 1\right) \geq & \frac{2}{1+k^{n-s}}\left(\sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|}\right) M(p, 1) \\
& +\frac{k^{n-s}-1}{k^{n}\left(1+k^{n-s}\right)}\left(\sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|}\right) m(p, k) \\
& +\frac{2}{k^{n-s}\left(1+k^{n-s}\right)}\left(\sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|}\right) F_{n-s}+\frac{B_{n-1}}{k^{n-1}},
\end{aligned}
$$

of our old result (1997), thereby obtaining a new refinement of known results

$$
M\left(p^{\prime}, 1\right) \geq \frac{n}{1+k^{n}} M(p, 1),(1973)
$$

and

$$
M\left(p^{\prime}, 1\right) \geq \frac{2}{1+k^{n}}\left(\sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|}\right) M(p, 1),(1983) .
$$

AMS Subject Classification: 30C10, 30A10.
Keywords and Phrases: Polynomial; Derivative; Lower bound for $M\left(p^{\prime}, 1\right)$; Zero of order s at 0; Refinement.

1. Introduction and statement of result

For an arbitrary polynomial $P(z)$, let $M(P, r)=\max _{|z|=r}|P(z)|$ and $m(P, r)=$ $\min _{|z|=r}|P(z)|,(r>0)$. For a given polynomial $p(z)$, concerning the estimate of $\left|p^{\prime}(z)\right|$ on $|z| \leq 1$, we have the following well-known result due to Turán [9], suggesting a lower bound for $M\left(p^{\prime}, 1\right)$.

Theorem A. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \leq 1$ then

$$
M\left(p^{\prime}, 1\right) \geq \frac{n}{2} M(p, 1)
$$

The result is sharp with equality for the polynomial $p(z)$ having all its zeros on $|z|=1$.
Malik [8] obtained a generalization of Theorem A, namely
Theorem B. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \leq k,(k \leq 1)$ then

$$
M\left(p^{\prime}, 1\right) \geq \frac{n}{1+k} M(p, 1)
$$

The result is sharp with equality for the polynomial $p(z)=(z+k)^{n}$, and Govil [4] obtained the generalization

Theorem C. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \leq k,(k \geq 1)$ then

$$
M\left(p^{\prime}, 1\right) \geq \frac{n}{1+k^{n}} M(p, 1)
$$

The result is sharp with equality for the polynomial $p(z)=z^{n}+k^{n}$.
Aziz [1] obtained a refinement of Theorem C in the form
Theorem D. If all the zeros of the polynomial $p(z)=a_{n} \prod_{j=1}^{n}\left(z-z_{j}\right)$, of degree n lie in $|z| \leq k,(k \geq 1)$ then

$$
M\left(p^{\prime}, 1\right) \geq \frac{2}{1+k^{n}}\left(\sum_{j=1}^{n} \frac{k}{k+\left|z_{j}\right|}\right) M(p, 1)
$$

The result is best possible with equality for the polynomial $p(z)=z^{n}+k^{n}$,
which was further refined by Govil [5] to give
Theorem E. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}=a_{n} \prod_{t=1}^{n}\left(z-z_{t}\right)$, be a polynomial of degree $n \geq 2,\left|z_{t}\right| \leq K_{t}$,
$1 \leq t \leq n$ and let $K=\max \left(K_{1}, K_{2}, \ldots, K_{n}\right) \geq 1$. Then

$$
\begin{aligned}
M\left(p^{\prime}, 1\right) \geq & \frac{2}{1+K^{n}}\left(\sum_{t=1}^{n} \frac{K}{K+K_{t}}\right) M(p, 1)+ \\
& \frac{2\left|a_{n-1}\right|}{1+K^{n}}\left(\sum_{t=1}^{n} \frac{1}{K+K_{t}}\right)\left(\frac{K^{n}-1}{n}-\frac{K^{n-2}-1}{n-2}\right)+\left|a_{1}\right|\left(1-\frac{1}{K^{2}}\right), n>2
\end{aligned}
$$

and

$$
\begin{aligned}
M\left(p^{\prime}, 1\right) \geq & \frac{2}{1+K^{n}}\left(\sum_{t=1}^{n} \frac{K}{K+K_{t}}\right) M(p, 1)+\frac{(K-1)^{n}}{1+K^{n}}\left|a_{1}\right|\left(\sum_{t=1}^{n} \frac{1}{K+K_{t}}\right) \\
& +\left|a_{1}\right|\left(1-\frac{1}{K}\right), n=2
\end{aligned}
$$

The result is best possible with equality for the polynomial $p(z)=z^{n}+K^{n}$.
We, in our old result [6], had considered the polynomial having all its zeros in $|z| \leq k,(k \geq 1)$, with a possible zero of order $m,(m \geq 0)$, at 0 and had obtained the following refinement of both Theorem C and Theorem D.

Theorem F. Let $p(z)=\sum_{s=0}^{n} a_{s} z^{s}=a_{n} \prod_{\gamma=1}^{n}\left(z-z_{\gamma}\right)$ be a polynomial of degree n, having all its zeros in $|z| \leq k,(k \geq 1)$. Then

$$
\begin{equation*}
M\left(p^{\prime}, 1\right) \geq \frac{2}{1+k^{n-m}}\left(\sum_{\gamma=1}^{n} \frac{k}{k+\left|z_{\gamma}\right|}\right) M(p, 1)+\frac{C}{k\left(1+k^{n-m}\right)}\left(\sum_{\gamma=1}^{n} \frac{1}{k+\left|z_{\gamma}\right|}\right)+D \tag{1.1}
\end{equation*}
$$

where

$$
p(z)=z^{m} p_{1}(z) \text {, with } p_{1}(0) \neq 0, \text { for some non-negative integer } m,
$$

non-negative real number

$$
C= \begin{cases}4\left|a_{n-2}\right|\left\{c_{n-m-2}(k)-c_{n-m-4}(k)-\right. & , n>4 \& 0 \leq m<n-4, \\ \left.\left(\frac{k^{n-m-1}-1}{n-m-1}-\frac{k^{n-m-3}-1}{n-m-3}\right)\right\} & , n \geq 4 \& m=n-4, \\ 4\left|a_{n-2}\right|\left\{D_{k}-\left(\frac{k^{3}-1}{3}-\frac{k^{2}-1}{2}\right)\right\} & , n \geq 3 \& m=n-3, \\ 4\left|a_{n-2}\right|\left\{F_{k}-\frac{k^{2}-1}{2}\right\} & , n>2 \& m=n-2, \\ \left|a_{n-1}\right| k(k-1)^{2} & , n \geq 1 \& m=n-1, \\ \left(\left|a_{n}\right| k-\left|a_{n-1}\right|\right) k(k-1) & , n \geq 1 \& m=n,\end{cases}
$$

non-negative real number

$$
D= \begin{cases}2\left|a_{2}\right|\left(\frac{1}{k}-\frac{1}{k^{3}}\right)\left(\sqrt{k^{2}+1}-1\right) & , n>4 \& m \leq n-1, \\ 2\left|a_{2}\right|\left(\frac{1}{k}-\frac{1}{k^{2}}\right)\left(\sqrt{k^{2}+k+1}-1\right) & , n=4 \& m \leq n-1, \\ \frac{2\left|a_{2}\right|}{k}\left(\sqrt{\frac{k^{2}+1}{2}}-1\right) & , n=3 \& m \leq n-1 \\ \left|a_{1}\right|\left(1-\frac{1}{k}\right) & , n=2 \& 0<m \leq n-1 \\ 0 & , n>1 \& m=n \\ 0 & , n=1,\end{cases}
$$

$$
\begin{aligned}
c_{t}(k) & =\int_{1}^{k} r^{t} \sqrt{r^{2}+1} d r, t>0 \\
D_{k} & =\int_{1}^{k}\left(r^{2}-r\right) \sqrt{r^{2}+r+1} d r
\end{aligned}
$$

and

$$
F_{k}=\int_{1}^{k} r \sqrt{\frac{r^{2}+1}{2}} d r
$$

In (1.1) equality holds for the polynomial $p(z)=z^{n}+k^{n}$.
In this paper we have obtained a refinement of our old result, namely Theorem F, thereby obtaining a new refinement of Theorem C and Theorem D. More precisely we have proved

Theorem. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}=a_{n} \prod_{\nu=1}^{n}\left(z-z_{\nu}\right)$ be a polynomial of degree n, having all its zeros in $|z| \leq k,(k \geq 1)$, with a zero of order $s,(s \geq 0)$, at 0 . Then

$$
\begin{align*}
M\left(p^{\prime}, 1\right) \geq & \frac{2}{1+k^{n-s}}\left(\sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|}\right) M(p, 1)+\frac{k^{n-s}-1}{k^{n}\left(1+k^{n-s}\right)}\left(\sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|}\right) m(p, k) \\
& +\frac{2}{k^{n-s}\left(k^{n-s}+1\right)}\left(\sum_{\nu=1}^{n} \frac{k}{k+\left|z_{\nu}\right|}\right) F_{n-s}+\frac{B_{n-1}}{k^{n-1}} \tag{1.2}
\end{align*}
$$

where

$$
\begin{aligned}
B_{0} & =0 \\
B_{1} & =(k-1)\left|a_{1}\right|, \\
B_{2} & =\max \left(E_{2}\left|a_{1}\right|, 2\left|a_{2}\right| k\left(\sqrt{\frac{k^{2}+1}{2}}-1\right)\right), \\
B_{3} & =\max \left(E_{3}\left|a_{1}\right|, 2\left|a_{2}\right|\left(k^{2}-k\right)\left(\sqrt{k^{2}+k+1}-1\right)\right), \\
B_{n-1} & =\max \left(E_{n-1}\left|a_{1}\right|, 2\left|a_{2}\right| D_{n-1}\right), n-1 \geq 4, \\
E_{n-1} & =k^{n-1}-k^{n-3}, n-1 \geq 2, \\
D_{n-1} & =\left(k^{n-2}-k^{n-4}\right)\left(\sqrt{k^{2}+1}-1\right), n-1 \geq 4, \\
F_{0} & =0 \\
F_{1} & =0 \\
F_{2} & =\left|a_{n-1}\right| k \frac{(k-1)^{2}}{2},
\end{aligned}
$$

$$
\begin{aligned}
F_{3} & =\max \left(k^{2}\left|a_{n-1}\right| G_{3}, 2 k\left|a_{n-2}\right|\left(\int_{1}^{k} r \sqrt{\frac{r^{2}+1}{2}} d r-\frac{k^{2}-1}{2}\right)\right), \\
F_{4} & =\max \left(k^{3}\left|a_{n-1}\right| G_{4}, 2 k^{2}\left|a_{n-2}\right|\left(\int_{1}^{k}\left(r^{2}-r\right) \sqrt{r^{2}+r+1} d r-\left(\frac{k^{3}-1}{3}-\frac{k^{2}-1}{2}\right)\right)\right), \\
F_{n-s} & =\max \left(k^{n-s-1}\left|a_{n-1}\right| G_{n-s}, 2 k^{n-s-2}\left|a_{n-2}\right| H_{n-s}\right), \quad n-s \geq 5, \\
G_{n-s} & =\frac{k^{n-s}-1}{n-s}-\frac{k^{n-s-2}-1}{n-s-2}, \quad n-s \geq 3
\end{aligned}
$$

and

$$
\begin{aligned}
H_{n-s}= & \int_{1}^{k} r^{n-s-2} \sqrt{r^{2}+1} d r-\int_{1}^{k} r^{n-s-4} \sqrt{r^{2}+1} d r-\left(\frac{k^{n-s-1}-1}{n-s-1}-\frac{k^{n-s-3}-1}{n-s-3}\right) \\
& n-s \geq 5
\end{aligned}
$$

In (1.2) equality holds for the polynomial $p(z)=z^{n}+k^{n}$.
Remark 1. In many cases, our Theorem gives a better lower bound for $M\left(p^{\prime}, 1\right)$ than those given by other known results, as for the polynomial $p(z)=z\left(z^{3}+8\right)(z+3)$, having all its zeros in $|z| \leq 3$, we get

$$
\begin{aligned}
M\left(p^{\prime}, 1\right) & \geq 25.5, \text { by Theorem, } \\
M\left(p^{\prime}, 1\right) & \geq 13.1, \text { by Theorem } \mathrm{F}, \\
M\left(p^{\prime}, 1\right) & \geq 23.4, \text { by Theorem } \mathrm{E}
\end{aligned}
$$

and

$$
M\left(p^{\prime}, 1\right) \geq 5.8, \text { by result }[7, \text { Theorem } 1.7]
$$

2. Lemmas

For the proof of Theorem we require the following lemmas.
Lemma 1. If $p(z)$ is a polynomial of degree $n(\geq 2)$ then for all $R>1$

$$
M(p, R) \leq R^{n} M(p, 1)-\left(R^{n}-R^{n-2}\right)|p(0)|
$$

Lemma 1 is due to Frappier et al. [3, Theorem 2].
Lemma 2. Let $p(z)$ be a polynomial of degree $n(\geq 2)$ and let $R \geq 1$. Then

$$
\begin{aligned}
& M(p, R) \leq R^{n} M(p, 1)-\left|p^{\prime}(0)\right|\left(R^{n-1}-R^{n-3}\right)\left(\sqrt{R^{2}+1}-1\right), n \geq 4, \\
& M(p, R) \leq R^{n} M(p, 1)-\left|p^{\prime}(0)\right|\left(R^{2}-R\right)\left(\sqrt{R^{2}+R+1}-1\right), n=3
\end{aligned}
$$

and

$$
M(p, R) \leq R^{n} M(p, 1)-\left|p^{\prime}(0)\right| R\left(\sqrt{\frac{R^{2}+1}{2}}-1\right), n=2
$$

Lemma 2 is due to Frappier et al. [3, Theorem 4].
Using Lemma 1 and Lemma 2 one easily obtains
Lemma 3. If $p(z)$ is a polynomial of degree n then for $R \geq 1$

$$
M(p, R) \leq R^{n} M(p, 1)-B_{n}(p, R)
$$

where

$$
\begin{aligned}
B_{1}(p, R) & =(R-1)|p(0)|, \\
B_{2}(p, R) & =\max \left(E_{2}(R)|p(0)|, R\left(\sqrt{\frac{R^{2}+1}{2}}-1\right)\left|p^{\prime}(0)\right|\right), \\
B_{3}(p, R) & =\max \left(E_{3}(R)|p(0)|,\left(R^{2}-R\right)\left(\sqrt{R^{2}+R+1}-1\right)\left|p^{\prime}(0)\right|\right), \\
B_{n}(p, R) & =\max \left(E_{n}(R)|p(0)|, D_{n}(R)\left|p^{\prime}(0)\right|\right), n \geq 4, \\
E_{n}(R) & =R^{n}-R^{n-2}, n \geq 2
\end{aligned}
$$

and

$$
D_{n}(R)=\left(R^{n-1}-R^{n-3}\right)\left(\sqrt{R^{2}+1}-1\right), n \geq 4 .
$$

Remark 2. One can note that Lemma 3 is trivially true for $n=0$, with $B_{0}(p, R)=0$.
Lemma 4. If $p(z)$ is a polynomial of degree n, having no zeros in $|z|<1$ then

$$
\begin{equation*}
M\left(p^{\prime}, 1\right) \leq \frac{n}{2}\{M(p, 1)-m(p, 1)\} \tag{2.1}
\end{equation*}
$$

There is equality in (2.1) for $p(z)=\alpha+\beta z^{n},|\alpha|=|\beta|$.
Lemma 4 is due to Aziz and Dawood [2].
Lemma 5. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n>2$, having no zeros in $|z|<1$ then for $R \geq 1$

$$
\begin{equation*}
M(p, R) \leq \frac{R^{n}+1}{2} M(p, 1)-m(p, 1) \frac{R^{n}-1}{2}-\left|a_{1}\right|\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right) . \tag{2.2}
\end{equation*}
$$

Equality holds in (2.2) for $p(z)=z^{n}+1$.
Proof of Lemma 5. It is similar to the proof of Lemma 4 [5] with one change:
Lemma 4 instead of Lemma 2 [5].
Lemma 6. If $p(z)$ is a polynomial of degree $n>4$, having no zeros in $|z|<1$ then for $R \geq 1$

$$
\begin{align*}
M(p, R) \leq & \frac{R^{n}+1}{2} M(p, 1)-\frac{R^{n}-1}{2} m(p, 1)-\left|p^{\prime \prime}(0)\right|\left\{c_{n-2}(R)-c_{n-4}(R)\right. \\
& \left.-\left(\frac{R^{n-1}-1}{n-1}-\frac{R^{n-3}-1}{n-3}\right)\right\} \tag{2.3}
\end{align*}
$$

where

$$
c_{t}(R)=\int_{1}^{R} r^{t} \sqrt{r^{2}+1} d r, t>0
$$

There is equality in (2.3) for $p(z)=\alpha+\beta z^{n},|\alpha|=|\beta|$.
Proof of Lemma 6. It is similar to the proof of Lemma 4 [6] with one change: Lemma 4 instead of Lemma 2 [6].

Lemma 7. If $p(z)$ is a polynomial of degree $n=4$, having no zeros in $|z|<1$ then for $R \geq 1$
$M(p, R) \leq \frac{R^{n}+1}{2} M(p, 1)-\frac{R^{n}-1}{2} m(p, 1)-\left|p^{\prime \prime}(0)\right|\left\{D_{R}-\left(\frac{R^{3}-1}{3}-\frac{R^{2}-1}{2}\right)\right\}$,
where

$$
\begin{equation*}
D_{R}=\int_{1}^{R}\left(r^{2}-r\right) \sqrt{r^{2}+r+1} d r . \tag{2.4}
\end{equation*}
$$

There is equality in (2.4) for $p(z)=\alpha+\beta z^{n},|\alpha|=|\beta|$.
Proof of Lemma 7. It is similar to the proof of Lemma 5 [6] with one change:
Lemma 4 instead of Lemma 2 [6].
Lemma 8. If $p(z)$ is a polynomial of degree $n=3$, having no zeros in $|z|<1$ then for $R \geq 1$

$$
\begin{equation*}
M(p, R) \leq \frac{R^{n}+1}{2} M(p, 1)-\frac{R^{n}-1}{2} m(p, 1)-\left|p^{\prime \prime}(0)\right|\left(F_{R}-\frac{R^{2}-1}{2}\right) \tag{2.5}
\end{equation*}
$$

where

$$
F_{R}=\int_{1}^{R} r \sqrt{\frac{r^{2}+1}{2}} d r
$$

There is equality in (2.5) for $p(z)=\alpha+\beta z^{n},|\alpha|=|\beta|$.
Proof of Lemma 8. It is similar to the proof of Lemma 6 [6] with one change: Lemma 4 instead of Lemma 2 [6].

Lemma 9. If $p(z)$ is a polynomial of degree $n=2$, having no zeros in $|z|<1$ then for $R \geq 1$

$$
\begin{equation*}
M(p, R) \leq \frac{R^{n}+1}{2} M(p, 1)-\frac{R^{n}-1}{2} m(p, 1)-\left|p^{\prime}(0)\right| \frac{(R-1)^{2}}{2} \tag{2.6}
\end{equation*}
$$

There is equality in (2.6) for $p(z)=\alpha+\beta z^{n},|\alpha|=|\beta|$.
Proof of Lemma 9. It is similar to the proof of Lemma 8 [6] with one change: Lemma 4 instead of Lemma 2 [6].
Using Lemma 5, Lemma 6, Lemma 7, Lemma 8 and Lemma 9 one easily obtains

Lemma 10. If $p(z)$ is a polynomial of degree n, having no zeros in $|z|<1$ then for $R \geq 1$

$$
\begin{equation*}
M(p, R) \leq \frac{R^{n}+1}{2} M(p, 1)-\frac{R^{n}-1}{2} m(p, 1)-F_{n}(p, R), \tag{2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{1}(p, R) & =0 \\
F_{2}(p, R) & =\left|p^{\prime}(0)\right| \frac{(R-1)^{2}}{2} \\
F_{3}(p, R) & =\max \left(G_{3}(R)\left|p^{\prime}(0)\right|,\left(\int_{1}^{R} r \sqrt{\frac{r^{2}+1}{2}} d r-\frac{R^{2}-1}{2}\right)\left|p^{\prime \prime}(0)\right|\right), \\
F_{4}(p, R) & =\max \left(G_{4}(R)\left|p^{\prime}(0)\right|,\left(\int_{1}^{R}\left(r^{2}-r\right) \sqrt{r^{2}+r+1} d r-\left(\frac{R^{3}-1}{3}-\frac{R^{2}-1}{2}\right)\right)\left|p^{\prime \prime}(0)\right|\right), \\
F_{n}(p, R) & =\max \left(G_{n}(R)\left|p^{\prime}(0)\right|, H_{n}(R)\left|p^{\prime \prime}(0)\right|\right), n \geq 5 \\
G_{n}(R) & =\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right), n \geq 3
\end{aligned}
$$

and
$H_{n}(R)=\int_{1}^{R} r^{n-2} \sqrt{r^{2}+1} d r-\int_{1}^{R} r^{n-4} \sqrt{r^{2}+1} d r-\left(\frac{R^{n-1}-1}{n-1}-\frac{R^{n-3}-1}{n-3}\right), n \geq 5$.
There is equality in (2.7) for $p(z)=\alpha+\beta z^{n},|\alpha|=|\beta|$.
Remark 3. One can note that Lemma 10 is trivially true for $n=0$, with $F_{0}(p, R)=0$.

3. Proof of Theorem

It is similar to the main part of Proof of Theorem [6] with two changes:
Lemma 3 along with Remark 2 instead of Lemma 3 [6],
Lemma 10 along with Remark 3 instead of Lemma 4 [6].

References

[1] A. Aziz, Inequalities for the derivative of a polynomial, Proc. Am. Math. Soc. 89 (1983) 259-266.
[2] A. Aziz, Q.M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory 54 (1988) 306-313.
[3] C. Frappier, Q.I. Rahman, St. Ruscheweyh, New inequalities for polynomials, Trans. Am. Math. Soc. 288 (1985) 69-99.
[4] N.K. Govil, On the derivative of a polynomial, Proc. Am. Math. Soc. 41 (1973) 543-546.
[5] N.K. Govil, Inequalities for the derivative of a polynomial, J. Approx. Theory 63 (1990) 65-71.
[6] V.K. Jain, On the derivative of a polynomial, Approximation Theory Appl. 13 (1997) 88-96.
[7] V.K. Jain, On the derivative of a polynomial with prescribed zeros, J. Math. Appl. 40 (2017) 97-120.
[8] M.A. Malik, On the derivative of a polynomial, J. Lond. Math. Soc. (2) 1 (1969) 57-60.
[9] P. Turán, Ü ber die albeitung von polynomen, Compos. Math. 7 (1939) 89-95.

DOI: 10.7862/rf.2023.1

Vinay Kumar Jain

email: vinayjain.kgp@gmail.com
ORCID: 0000-0003-2382-2499
Mathematics Department
I.I.T.

Kharagpur - 721302
INDIA

