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On the Derivative of a Polynomial

Vinay Kumar Jain

Abstract: For an arbitrary polynomial P (z), let M(P, r) =
max|z|=r |P (z)| and m(P, r) = min|z|=r |P (z)|, (r > 0). For a polyno-
mial p(z) =

∑n
j=0 ajz

j = an
∏n

ν=1(z − zν), of degree n, having all its
zeros in |z| ≤ k, (k ≥ 1), with a zero of order s, (s ≥ 0), at 0 and

F0, F1, F2, Gn−s, F3, F4, Hn−s, Fn−s, B0, B1, En−1, B2, B3, Dn−1 and Bn−1,

as in Theorem, we have obtained a refinement

M(p
′
, 1) ≥ 2

1 + kn−s

( n∑
ν=1

k

k + |zν |
)
M(p, 1)

+
kn−s − 1

kn(1 + kn−s)

( n∑
ν=1

k

k + |zν |
)
m(p, k)

+
2

kn−s(1 + kn−s)

( n∑
ν=1

k

k + |zν |
)
Fn−s +

Bn−1

kn−1
,

of our old result (1997), thereby obtaining a new refinement of known
results

M(p′, 1) ≥ n

1 + kn
M(p, 1), (1973)

and

M(p′, 1) ≥ 2

1 + kn
( n∑
ν=1

k

k + |zν |
)
M(p, 1), (1983).
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1. Introduction and statement of result

For an arbitrary polynomial P (z), let M(P, r) = max|z|=r |P (z)| and m(P, r) =
min|z|=r |P (z)|, (r > 0). For a given polynomial p(z), concerning the estimate of |p′(z)|
on |z| ≤ 1, we have the following well-known result due to Turán [9], suggesting a
lower bound for M(p′, 1).

Theorem A. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ 1 then

M(p′, 1) ≥ n

2
M(p, 1).

The result is sharp with equality for the polynomial p(z) having all its zeros on |z| = 1.

Malik [8] obtained a generalization of Theorem A, namely

Theorem B. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ k, (k ≤ 1)
then

M(p′, 1) ≥ n

1 + k
M(p, 1).

The result is sharp with equality for the polynomial p(z) = (z + k)n,

and Govil [4] obtained the generalization

Theorem C. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ k, (k ≥ 1)
then

M(p′, 1) ≥ n

1 + kn
M(p, 1).

The result is sharp with equality for the polynomial p(z) = zn + kn.

Aziz [1] obtained a refinement of Theorem C in the form

Theorem D. If all the zeros of the polynomial p(z) = an
∏n

j=1(z − zj), of degree n
lie in |z| ≤ k, (k ≥ 1) then

M(p′, 1) ≥ 2

1 + kn

( n∑
j=1

k

k + |zj |

)
M(p, 1).

The result is best possible with equality for the polynomial p(z) = zn + kn,

which was further refined by Govil [5] to give

Theorem E. Let p(z) =
∑n

j=0 ajz
j = an

∏n
t=1(z − zt), be a polynomial of degree

n ≥ 2, |zt| ≤ Kt,
1 ≤ t ≤ n and let K = max(K1,K2, . . . ,Kn) ≥ 1. Then

M(p′, 1) ≥ 2

1 +Kn

( n∑
t=1

K

K +Kt

)
M(p, 1) +

2|an−1|
1 +Kn

( n∑
t=1

1

K +Kt

)(Kn − 1

n
− Kn−2 − 1

n− 2

)
+ |a1|

(
1− 1

K2

)
, n > 2
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and

M(p′, 1) ≥ 2

1 +Kn

( n∑
t=1

K

K +Kt

)
M(p, 1) +

(K − 1)n

1 +Kn
|a1|

( n∑
t=1

1

K +Kt

)
+|a1|

(
1− 1

K

)
, n = 2.

The result is best possible with equality for the polynomial p(z) = zn +Kn.

We, in our old result [6], had considered the polynomial having all its zeros in
|z| ≤ k, (k ≥ 1), with a possible zero of order m, (m ≥ 0), at 0 and had obtained the
following refinement of both Theorem C and Theorem D.

Theorem F. Let p(z) =
∑n

s=0 asz
s = an

∏n
γ=1(z − zγ) be a polynomial of degree n,

having all its zeros in |z| ≤ k, (k ≥ 1). Then

M(p′, 1) ≥ 2

1 + kn−m

( n∑
γ=1

k

k + |zγ |

)
M(p, 1) +

C

k(1 + kn−m)

( n∑
γ=1

1

k + |zγ |

)
+D,

(1.1)
where

p(z) = zmp1(z), with p1(0) ̸= 0, for some non-negative integer m,

non-negative real number

C =



4|an−2| {cn−m−2(k)− cn−m−4(k)−(
kn−m−1−1
n−m−1 − kn−m−3−1

n−m−3

)}
, n > 4 & 0 ≤ m < n− 4,

4|an−2|
{
Dk −

(
k3−1

3 − k2−1
2

)}
, n ≥ 4 & m = n− 4,

4|an−2|
{
Fk − k2−1

2

}
, n ≥ 3 & m = n− 3,

|an−1|k(k − 1)2 , n > 2 & m = n− 2,
(|an|k − |an−1|)k(k − 1) , n ≥ 1 & m = n− 1,
0 , n ≥ 1 & m = n,

non-negative real number

D =



2|a2|
(

1
k − 1

k3

)
(
√
k2 + 1− 1) , n > 4 & m ≤ n− 1,

2|a2|
(

1
k − 1

k2

)
(
√
k2 + k + 1− 1) , n = 4 & m ≤ n− 1,

2|a2|
k

(√
k2+1

2 − 1
)

, n = 3 & m ≤ n− 1,

|a1|
(
1− 1

k

)
, n = 2 & 0 < m ≤ n− 1,

0 , n > 1 & m = n,
0 , n = 1,
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ct(k) =

∫ k

1

rt
√
r2 + 1dr, t > 0,

Dk =

∫ k

1

(r2 − r)
√
r2 + r + 1dr

and

Fk =

∫ k

1

r

√
r2 + 1

2
dr.

In (1.1) equality holds for the polynomial p(z) = zn + kn.

In this paper we have obtained a refinement of our old result, namely Theorem
F, thereby obtaining a new refinement of Theorem C and Theorem D. More precisely
we have proved

Theorem. Let p(z) =
∑n

j=0 ajz
j = an

∏n
ν=1(z − zν) be a polynomial of degree

n, having all its zeros in |z| ≤ k, (k ≥ 1), with a zero of order s, (s ≥ 0), at 0. Then

M(p′, 1) ≥ 2

1 + kn−s

( n∑
ν=1

k

k + |zν |

)
M(p, 1) +

kn−s − 1

kn(1 + kn−s)

( n∑
ν=1

k

k + |zν |

)
m(p, k)

+
2

kn−s(kn−s + 1)

( n∑
ν=1

k

k + |zν |

)
Fn−s +

Bn−1

kn−1
, (1.2)

where

B0 = 0,

B1 = (k − 1)|a1|,

B2 = max
(
E2|a1|, 2|a2|k

(√k2 + 1

2
− 1

))
,

B3 = max
(
E3|a1|, 2|a2|(k2 − k)(

√
k2 + k + 1− 1)

)
,

Bn−1 = max
(
En−1|a1|, 2|a2|Dn−1

)
, n− 1 ≥ 4,

En−1 = kn−1 − kn−3, n− 1 ≥ 2,

Dn−1 =
(
kn−2 − kn−4

)(√
k2 + 1− 1

)
, n− 1 ≥ 4,

F0 = 0,

F1 = 0,

F2 = |an−1|k
(k − 1)2

2
,
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F3 = max
(
k2|an−1|G3, 2k|an−2|

(∫ k

1

r

√
r2 + 1

2
dr − k2 − 1

2

))
,

F4 = max
(
k3|an−1|G4, 2k

2|an−2|
(∫ k

1

(r2 − r)
√
r2 + r + 1dr −

(k3 − 1

3
− k2 − 1

2

)))
,

Fn−s = max
(
kn−s−1|an−1|Gn−s, 2k

n−s−2|an−2|Hn−s

)
, n− s ≥ 5,

Gn−s =
kn−s − 1

n− s
− kn−s−2 − 1

n− s− 2
, n− s ≥ 3

and

Hn−s =

∫ k

1

rn−s−2
√
r2 + 1dr−

∫ k

1

rn−s−4
√

r2 + 1dr −
(kn−s−1 − 1

n− s− 1
− kn−s−3 − 1

n− s− 3

)
,

n− s ≥ 5.

In (1.2) equality holds for the polynomial p(z) = zn + kn.

Remark 1. In many cases, our Theorem gives a better lower bound for M(p′, 1) than
those given by other known results, as for the polynomial p(z) = z(z3 + 8)(z + 3),
having all its zeros in |z| ≤ 3, we get

M(p′, 1) ≥ 25.5, by Theorem,

M(p′, 1) ≥ 13.1, by Theorem F,

M(p′, 1) ≥ 23.4, by Theorem E

and

M(p′, 1) ≥ 5.8,by result [7, Theorem 1.7].

2. Lemmas

For the proof of Theorem we require the following lemmas.

Lemma 1. If p(z) is a polynomial of degree n(≥ 2) then for all R > 1

M(p,R) ≤ RnM(p, 1)− (Rn −Rn−2)|p(0)|.

Lemma 1 is due to Frappier et al. [3, Theorem 2].

Lemma 2. Let p(z) be a polynomial of degree n(≥ 2) and let R ≥ 1. Then

M(p,R) ≤ RnM(p, 1)− |p′(0)|(Rn−1 −Rn−3)(
√
R2 + 1− 1), n ≥ 4,

M(p,R) ≤ RnM(p, 1)− |p′(0)|(R2 −R)(
√

R2 +R+ 1− 1), n = 3

and

M(p,R) ≤ RnM(p, 1)− |p′(0)|R
(√R2 + 1

2
− 1

)
, n = 2.
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Lemma 2 is due to Frappier et al. [3, Theorem 4].
Using Lemma 1 and Lemma 2 one easily obtains

Lemma 3. If p(z) is a polynomial of degree n then for R ≥ 1

M(p,R) ≤ RnM(p, 1)−Bn(p,R),

where

B1(p,R) = (R− 1)|p(0)|,

B2(p,R) = max(E2(R)|p(0)|, R
(√R2 + 1

2
− 1

)
|p′(0)|),

B3(p,R) = max(E3(R)|p(0)|, (R2 −R)
(√

R2 +R+ 1− 1
)
|p′(0)|),

Bn(p,R) = max(En(R)|p(0)|, Dn(R)|p′(0)|), n ≥ 4,

En(R) = Rn −Rn−2, n ≥ 2

and

Dn(R) = (Rn−1 −Rn−3)(
√
R2 + 1− 1), n ≥ 4.

Remark 2. One can note that Lemma 3 is trivially true for n = 0, with B0(p,R) = 0.

Lemma 4. If p(z) is a polynomial of degree n, having no zeros in |z| < 1 then

M(p′, 1) ≤ n

2
{M(p, 1)−m(p, 1)} . (2.1)

There is equality in (2.1) for p(z) = α+ βzn, |α| = |β|.

Lemma 4 is due to Aziz and Dawood [2].

Lemma 5. If p(z) =
∑n

j=0 ajz
j is a polynomial of degree n > 2, having no zeros in

|z| < 1 then for R ≥ 1

M(p,R) ≤ Rn + 1

2
M(p, 1)−m(p, 1)

Rn − 1

2
− |a1|

(Rn − 1

n
− Rn−2 − 1

n− 2

)
. (2.2)

Equality holds in (2.2) for p(z) = zn + 1.

Proof of Lemma 5. It is similar to the proof of Lemma 4 [5] with one change:
Lemma 4 instead of Lemma 2 [5].

Lemma 6. If p(z) is a polynomial of degree n > 4, having no zeros in |z| < 1 then
for R ≥ 1

M(p,R) ≤ Rn + 1

2
M(p, 1)− Rn − 1

2
m(p, 1)− |p′′(0)| {cn−2(R)− cn−4(R)

−
(Rn−1 − 1

n− 1
− Rn−3 − 1

n− 3

)}
, (2.3)
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where

ct(R) =

∫ R

1

rt
√

r2 + 1dr, t > 0.

There is equality in (2.3) for p(z) = α+ βzn, |α| = |β|.

Proof of Lemma 6. It is similar to the proof of Lemma 4 [6] with one change:
Lemma 4 instead of Lemma 2 [6].

Lemma 7. If p(z) is a polynomial of degree n = 4, having no zeros in |z| < 1 then
for R ≥ 1

M(p,R) ≤ Rn + 1

2
M(p, 1)− Rn − 1

2
m(p, 1)− |p′′(0)|

{
DR −

(R3 − 1

3
− R2 − 1

2

)}
,

(2.4)
where

DR =

∫ R

1

(r2 − r)
√

r2 + r + 1dr.

There is equality in (2.4) for p(z) = α+ βzn, |α| = |β|.

Proof of Lemma 7. It is similar to the proof of Lemma 5 [6] with one change:
Lemma 4 instead of Lemma 2 [6].

Lemma 8. If p(z) is a polynomial of degree n = 3, having no zeros in |z| < 1 then
for R ≥ 1

M(p,R) ≤ Rn + 1

2
M(p, 1)− Rn − 1

2
m(p, 1)− |p′′(0)|

(
FR − R2 − 1

2

)
, (2.5)

where

FR =

∫ R

1

r

√
r2 + 1

2
dr.

There is equality in (2.5) for p(z) = α+ βzn, |α| = |β|.

Proof of Lemma 8. It is similar to the proof of Lemma 6 [6] with one change:
Lemma 4 instead of Lemma 2 [6].

Lemma 9. If p(z) is a polynomial of degree n = 2, having no zeros in |z| < 1 then
for R ≥ 1

M(p,R) ≤ Rn + 1

2
M(p, 1)− Rn − 1

2
m(p, 1)− |p′(0)| (R− 1)2

2
. (2.6)

There is equality in (2.6) for p(z) = α+ βzn, |α| = |β|.

Proof of Lemma 9. It is similar to the proof of Lemma 8 [6] with one change:
Lemma 4 instead of Lemma 2 [6].
Using Lemma 5, Lemma 6, Lemma 7, Lemma 8 and Lemma 9 one easily obtains
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Lemma 10. If p(z) is a polynomial of degree n, having no zeros in |z| < 1 then for
R ≥ 1

M(p,R) ≤ Rn + 1

2
M(p, 1)− Rn − 1

2
m(p, 1)− Fn(p,R), (2.7)

where

F1(p,R) = 0,

F2(p,R) = |p′(0)| (R− 1)2

2
,

F3(p,R) = max
(
G3(R)|p′(0)|,

(∫ R

1

r

√
r2 + 1

2
dr − R2 − 1

2

)
|p′′(0)|

)
,

F4(p,R) = max
(
G4(R)|p′(0)|,

(∫ R

1

(r2−r)
√
r2 + r + 1dr−

(R3−1

3
−R2−1

2

))
|p′′(0)|

)
,

Fn(p,R) = max
(
Gn(R)|p′(0)|, Hn(R)|p′′(0)|

)
, n ≥ 5,

Gn(R) =
(Rn − 1

n
− Rn−2 − 1

n− 2

)
, n ≥ 3

and

Hn(R) =

∫ R

1

rn−2
√
r2 + 1dr −

∫ R

1

rn−4
√
r2 + 1dr −

(Rn−1 − 1

n− 1
−Rn−3 − 1

n− 3

)
, n ≥ 5.

There is equality in (2.7) for p(z) = α+ βzn, |α| = |β|.

Remark 3. One can note that Lemma 10 is trivially true for n = 0, with F0(p,R) = 0.

3. Proof of Theorem

It is similar to the main part of Proof of Theorem [6] with two changes:
Lemma 3 along with Remark 2 instead of Lemma 3 [6],
Lemma 10 along with Remark 3 instead of Lemma 4 [6].
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