On Some Classes of Block Repetition Codes with Covering Radius of the Codes $\mathbb{Z}_{3^{2}}$

Chella Pandian P.

Abstract

In this paper, to obtain the bounds for some classes of repetition codes with covering radius by using various weight and also the same size and different size of length in repetition codes over a finite $\operatorname{ring} \mathbb{Z}_{3^{2}}$.

AMS Subject Classification: 94B75, 16P10.
Keywords and Phrases: Finite ring; Linear Code; Covering radius; Generator matrix; Different distance.

1. Introduction

In coding theory for the last five decades, many researchers has been attraction in codes over finite rings and the special types of the rings $\mathbb{Z}_{2 n}$, where $2 n$ is the ring of integers modulo.

The authors was discovered the best well known non-linear binary codes can be constructed by cyclic codes and gray map over a finite ring \mathbb{Z}_{4} in [19] and many research articles has indicated codes over a finite ring \mathbb{Z}_{4} received much attention [1,5-9]. Coding theory, the covering radius is one of the important parameter to find the maximum error-correcting capability of codes. In Binary code, [3, 4, 13-15], the covering radius of codes are studied for linear and non-linear codes can be received from codes over a finite ring \mathbb{Z}_{4} via the gray map. In [10-12], the author to find lower bound and upper bound of covering radius in a suitable of different types repetition codes by using some finite rings with respect to various weight.

In this paper, to determine the covering radius of some attraction classes of repetition codes over a finite commutative ring $\mathbb{Z}_{3^{2}}$ of interger modulo 3^{2} by using to different weight(distance).

2. Preliminaries

Let $\mathbb{Z}_{3^{2}}$ be a finite set with nine elements $\{0,1,2,3,4,5,6,7,8\}$ with two operation $\oplus_{3^{2}}, \odot_{3^{2}}$ is said to be a finite commutative ring. It is denoted by $\left(\mathbb{Z}_{3^{2}}, \oplus_{3^{2}}, \odot_{3^{2}}\right)=\mathbb{Z}$ with a characteristic 3^{2}. Let $C \subseteq \mathbb{Z}$, then C is say that a code. A code C is called the linear code, if the ring \mathbb{Z} is an \mathbb{Z}-submodule of \mathbb{Z}^{l}, where l is the length of a code(that is, $\left.C=(11111), l(C)=5, C_{1}=(3333), l\left(C_{1}\right)=4\right)$. The elements of C is called a codeword of C.

A Gray Map $h: \mathbb{Z}_{3^{2}} \rightarrow\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$ is defined by

$$
\begin{gathered}
h(0)=00, h(1)=01, h(2)=02, h(3)=10, h(4)=11, h(5)=12, \\
h(6)=20, h(7)=21, h(8)=22,
\end{gathered}
$$

then the Gray map $h_{1}: \mathbb{Z}_{3^{2}}^{l} \rightarrow\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)^{l}$ is define $h_{1}(y)=\left(h\left(y_{1}\right), h\left(y_{2}\right), \cdots, h\left(y_{n}\right)\right)$, where $y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ in [17].

Let $y \in \mathbb{Z}^{l}$ be a codeword of code, that is $y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ and in [20], the Lee weight of y as given

$$
w_{L}(y)=\left\{\begin{array}{lll}
0 & \text { if } & y=0 \\
1 & \text { if } & y=1,8 \\
2 & \text { if } & y=2,7 \\
3 & \text { if } & y=3,4,5,6
\end{array}\right.
$$

Let $y_{i} \in \mathbb{Z}$ be the codeword of Lee weight of y_{i} is defined as $\sum_{i} w_{L}\left(y_{i}\right)_{i=0}$ to 8 . If $c_{1}, c_{2} \in C$, be any two distinct codewords of Lee distance is defined as $d_{L}(C)=$ $\left\{d_{L}\left(c_{1}, c_{2}\right) \mid c_{1}-c_{2} \neq 0\right.$ and $\left.c_{1}, c_{2} \in C\right\}$. The minimum Lee weight of C is $d_{L}(C)=$ $\min \left\{d_{L}\left(c_{1}, c_{2}\right) \mid c_{1}-c_{2} \neq 0\right.$ and $\left.c_{1}, c_{2} \in C\right\}$. In C is a linear code C, thus $d_{L}(C)=$ $\min \left\{w_{L}(c) \mid c \neq 0 \in C\right\}$. Therefore, $d_{L}\left(c_{1}, c_{2}\right)=w_{L}\left(c_{1}-c_{2}\right)$. If C is a linear code of length l over \mathbb{Z} with the number of codewords W and the minimum Lee distance d_{L}, is said to be an $\left(l, W, d_{L}\right)$ code in \mathbb{Z}. In C is a linear code of length l over \mathbb{Z}, therefore the Lee distance between z and C is defined as $d_{L}(z, C)=\min \left\{d_{L}(z, c) \mid \forall c \in C\right\}$, for any $z \in \mathbb{Z}^{l}$.

The Chinese Euclidean weight of x is

$$
w_{C E}(y)=\left\{\begin{array}{lll}
0 & \text { if } & y=0 \\
1 & \text { if } & y=1,8 \\
2 & \text { if } & y=2,7 \\
3 & \text { if } & y=3,6 \\
4 & \text { if } & y=4,5
\end{array}\right.
$$

in [18], where $y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ be a codeword of code over \mathbb{Z}^{l}.
The parameters of Chinese Euclidean weight code is an $\left(l, W, d_{C E}\right)$. In Chinese Euclidean distance(weight), let $c_{1}, c_{2} \in \mathbb{Z}^{l}$ be any two different codewords is defined as $d_{C E}\left(c_{1}, c_{2}\right)=w t_{C E}\left(c_{1}-c_{2}\right)$. Let C be a linear code of length l over \mathbb{Z}. Then $d_{C E}(z, C)=\min \left\{d_{C E}(z, c) \mid \forall c \in C\right\}$, for any $z \in \mathbb{Z}^{l}$.

In Gray weight, let $y \in \mathbb{Z}^{l}$ be a codeword of code, is define as

$$
w_{G}(y)=\left\{\begin{array}{lll}
0 & \text { if } & y=0 \\
1 & \text { if } & y=1,2,3 \text { and } 6 \\
2 & \text { if } & \text { otherwise }
\end{array}\right.
$$

in [17].
In C is a linear code with Gray weight(distance), is an (l, W, d_{G}) code. Define, $d_{G}\left(c_{1}, c_{2}\right)=w t_{G}\left(c_{1}-c_{2}\right)$, where $c_{1}, c_{2} \in \mathbb{Z}^{l}$ and $d_{G}(z, C)=\min \left\{d_{G}(z, c) \mid \forall c \in C\right\}$, for any $z \in \mathbb{Z}^{l}$.

In [2], Let $y \in \mathbb{Z}^{l}$. The Bachoc weight of x is defined as

$$
w_{B}(y)=\left\{\begin{array}{lll}
0 & \text { if } & y=0 \\
1 & \text { if } & y=1,2,4,5,7,8 \\
3 & \text { if } & y=3,6
\end{array}\right.
$$

In C is a linear code with Bachoc weight(distance) is an $\left(l, W, d_{B}\right)$ code. Define, $d_{B}\left(c_{1}, c_{2}\right)=w t_{B}\left(c_{1}-c_{2}\right)$, where $c_{1}, c_{2} \in \mathbb{Z}^{n}$ and $d_{B}(z, C)=\min \left\{d_{B}(z, c) \mid \forall c \in C\right\}$, for any $z \in \mathbb{Z}^{n}$.

Example 2.1. Let $y=13472 \in \mathbb{Z}^{5}$. Then,

$$
\begin{aligned}
& w_{L}(y)=w_{L}(1)+w_{L}(3)+w_{L}(4)+w_{L}(7)+w_{L}(2)=11 \\
& w_{C E}(y)=w_{C E}(1)+w_{C E}(3)+w_{C E}(4)+w_{C E}(7)+w_{C E}(2)=12, \\
& w_{G}(y)=w_{G}(1)+w_{G}(3)+w_{G}(4)+w_{G}(7)+w_{G}(2)=8 \text { and } \\
& w_{B}(y)=w_{B}(1)+w_{B}(3)+w_{B}(4)+w_{B}(7)+w_{B}(2)=10 .
\end{aligned}
$$

3. Repetition code with Covering radius of code in \mathbb{Z}

Let d be the distance of a code C in \mathbb{Z} with respect to different distance(weight), such as Lee weight, Chinese Euclidean weight, Gray weight and Bachoc weight. The covering radius of a code C is

$$
R_{d}(C)=\max _{w \in \mathbb{Z}^{n}}\left\{\min _{c \in C}\{d(w, c)\}\right\}
$$

where C is a code and $R_{d}(C)$ is a covering radius of the code C with distance d.
In $F_{q}=\left\{0,1, \gamma_{2}, \cdots, \gamma_{q-1}\right\}$ is a finite field. Let C be a q-ary repetition code C over F_{q}. That is $C=\left\{\bar{\gamma}=(\gamma \gamma \cdots \gamma) \mid \gamma \in F_{q}\right\}$ and the repetition code C is an $[l, 1, l]$ code. Therefore, the covering radius of the code C is $\left\lfloor\frac{l(q-1)}{q}\right\rfloor$ by using in [16].

Let C be a block repetition code of size l, the parameter of C is an $[l(q-1), 1, l(q-$ 1)] be a generated by $G=[\overbrace{11 \cdots 1}^{l} \overbrace{\gamma_{2} \gamma_{2} \cdots \gamma_{2}}^{l} \cdots \overbrace{\gamma_{q-1} \gamma_{q-1} \cdots \gamma_{q-1}}^{l}]$. In [16], thus the covering radius of the code C is $\left\lfloor\frac{l(q-1)^{2}}{q}\right\rfloor$, since it will be equivalent to a repetition code of length $(q-1) l$.

A code $C \subseteq \mathbb{Z}$ is also linear code and is called the Generator matrix (G), if the basis elements in a row of matrix.

In repetition code over \mathbb{Z}, there are two type of repetition codes of length l viz.

1. Type A-(A Generator matrix $\left(G_{A}\right)$ with unit element in \mathbb{Z} and its generated by the code C_{A})
2. Type B-(A Generator matrix $\left(G_{B}\right)$ with zero divisor element in \mathbb{Z} and its generated by the code C_{B})

	$\begin{gathered} {\left[l, k=1, d_{i}=l\right]} \\ i=\{L, C E, G, B\} \end{gathered}$
Type B $\left(G_{B}\right) \rightarrow$	$\begin{aligned} & \left(l, W=3, d_{j}=3 l\right) \\ & j=\{L, C E, G, B\} \end{aligned}$

Theorem 3.1.

- $R_{L}\left(C_{A}\right)=2 l$,
- $R_{L}\left(C_{B}\right)=2 l$, here $R_{L}\left(C_{A(B)}\right)$ is a covering radius of codes $C_{A(B)}$ for generator matrix $G_{A(B)}$ by using Lee weight and l is a length of code in Type A and Type B.

Proof. Let $y \in \mathbb{Z}^{l}$ by ϱ_{0} times $0^{\prime} \mathrm{s}, \varrho_{1}$ times $1^{\prime} \mathrm{s}, \varrho_{2}$ times $2^{\prime} \mathrm{s}, \varrho_{3}$ times $3^{\prime} \mathrm{s}, \varrho_{4}$ times $4^{\prime} \mathrm{s}, \varrho_{5}$ times $5^{\prime} \mathrm{s}, \varrho_{6}$ times $6^{\prime} \mathrm{s}, \varrho_{7}$ times $7^{\prime} \mathrm{s}, \varrho_{8}$ times $8^{\prime} \mathrm{s}$ in y and $\sum_{i} \varrho_{i}=l$ and the code $c_{i} \in\left\{\gamma\left(C_{A}\right) \mid \gamma \in \mathbb{Z}^{l}\right\}$, where $i=0$ to 8 . Then

$$
\begin{aligned}
d_{L}\left(y, c_{0}\right) & =w t_{L}(y-00 \cdots 0) \\
& =0 \varrho_{0}+1 \varrho_{1}+2 \varrho_{2}+3 \varrho_{3}+4 \varrho_{4}+5 \varrho_{5}+6 \varrho_{6}+7 \varrho_{7}+8 \varrho_{8} \\
& =\varrho_{1}+2 \varrho_{2}+3 \varrho_{3}+3 \varrho_{4}+3 \varrho_{5}+3 \varrho_{6}+2 \varrho_{7}+\varrho_{8} \\
d_{L}\left(y, c_{0}\right) & =l-\varrho_{0}+\varrho_{2}+2 \varrho_{3}+2 \varrho_{4}+2 \varrho_{5}+2 \varrho_{6}+\varrho_{7}
\end{aligned}
$$

Alike,

$$
d_{L}\left(y, c_{1}\right)=l-\varrho_{1}+\varrho_{3}+2 \varrho_{4}+2 \varrho_{5}+2 \varrho_{6}+2 \varrho_{7}+\varrho_{8}
$$

$$
\begin{aligned}
& d_{L}\left(y, c_{2}\right)=l-\varrho_{2}+\varrho_{0}+\varrho_{4}+2 \varrho_{5}+2 \varrho_{6}+2 \varrho_{7}+2 \varrho_{8}, \\
& d_{L}\left(y, c_{3}\right)=l-\varrho_{3}+2 \varrho_{0}+\varrho_{1}+\varrho_{5}+2 \varrho_{6}+2 \varrho_{7}+2 \varrho_{8}, \\
& d_{L}\left(y, c_{4}\right)=l-\varrho_{4}+2 \varrho_{0}+2 \varrho_{1}+\varrho_{2}+\varrho_{6}+2 \varrho_{7}+2 \varrho_{8}, \\
& d_{L}\left(y, c_{5}\right)=l-\varrho_{5}+2 \varrho_{0}+2 \varrho_{1}+2 \varrho_{2}+\varrho_{3}+\varrho_{7}+2 \varrho_{8}, \\
& d_{L}\left(y, c_{6}\right)=l-\varrho_{6}+2 \varrho_{0}+2 \varrho_{1}+2 \varrho_{2}+2 \varrho_{3}+\varrho_{4}+\varrho_{8}, \\
& d_{L}\left(y, c_{7}\right)=l-\varrho_{7}+\varrho_{0}+2 \varrho_{1}+2 \varrho_{2}+2 \varrho_{3}+2 \varrho_{4}+\varrho_{5}, \\
& d_{L}\left(y, c_{8}\right)=l-\varrho_{8}+\varrho_{1}+2 \varrho_{2}+2 \varrho_{3}+2 \varrho_{4}+2 \varrho_{5}+\varrho_{6} .
\end{aligned}
$$

Then, $d_{L}\left(y, C_{A}\right)=\min \left\{d_{L}\left(x, c_{i}\right) \mid i=0\right.$ to 8$\} \leq 2 l$ and $r_{L}\left(C_{A}\right) \leq 2 l$.
If $y_{1} \in \mathbb{Z}^{l}$, whereas $y_{1}=\overbrace{00 \cdots 0}^{k} \overbrace{11 \cdots 1}^{k} \overbrace{22 \cdots 2}^{k} \overbrace{33 \cdots 3}^{k} \overbrace{44 \cdots 4}^{k} \overbrace{55 \cdots 5}^{k}$
$\overbrace{66 \cdots 6}^{k} \overbrace{77 \cdots 7}^{k} \overbrace{88 \cdots 8}^{l-8 k}$, here $k=\left\lfloor\frac{l}{3^{2}}\right\rfloor$. Thus, $d_{L}\left(y_{1}, c_{i}\right)=12 k, i=0$ to 8 and $r_{L}\left(C_{A}\right) \geq$ $\min \left\{d_{L}\left(y_{1}, c_{i}\right) \mid i=0\right.$ to 8$\} \geq 2 l$ and hence, $r_{L}\left(C_{A}\right)=2 l$.

Let $y=\overbrace{33 \cdots 3}^{\frac{l}{2}} \overbrace{000 \cdots 0}^{\frac{\frac{l}{2}}{2}} \in \mathbb{Z}^{l}$. The code $C_{B}=\left\{\gamma(33 \cdots 3) \mid \gamma \in \mathbb{Z}^{l}\right\}$ and it is generated by Type- B. Thus, $r_{L}\left(C_{B}\right) \geq 2 l$.

If $y \in \mathbb{Z}^{l}$ be any codeword and take y has ϱ_{i} links i^{\prime} s, with $\sum_{i} \varrho_{i}=l$, where $i=0$ to 8 . Then, $r_{L}\left(C_{B}\right) \leq 2 l$.

Theorem 3.2. For $R_{d}(C)=\max _{w \in \mathbb{Z}^{n}}\left\{\min _{c \in C}\{d(w, c)\}\right\}$, where $d=\{$ Chinese Euclidean weight, Gray weight and Bachoc weight \}.

1. $R_{C E}\left(C_{A}\right)=\frac{20 l}{9}, \frac{3 n}{2} \leq R_{C E}\left(C_{B}\right) \leq 2 l$,
2. $R_{G}\left(C_{A}\right)=\frac{4 l}{3}, R_{G}\left(C_{B}\right)=l$ and
3. $R_{B}\left(C_{A}\right)=\frac{4 l}{3}, \frac{3 l}{2} \leq R_{B}\left(C_{B^{*}}\right) \leq 2 l$, where $B^{*}=$ Type- B and l is a length of code in Type A and Type B.

Proof. The methods of proof is follows from Theorem 3.1, by using the Type A and Type B with different weight, such as $w_{C E}(x), w_{G}(x)$, and $w_{B}(x)$.

4. Same size of length in Block repetition code

Let $B R C^{2 l}$ be a Block Repetition Code with length $2 l$ and its generated by $G_{A B}=$ $\overbrace{11 \cdots 1}^{l} \overbrace{33 \cdots 3}^{l}]$ is size of length (l) for each block and the parameters of $B R C^{2 l}$ code is an $[2 l, 1,3 l, 3 l, 3 l, 3 l]$.

Theorem 4.1.

1. $R_{L}\left(B R C^{2 l}\right)=4 l$,
2. $R_{C E}\left(B R C^{2 l}\right)=\frac{38 l}{9}$,
3. $R_{G}\left(B R C^{2 l}\right)=\frac{7 l}{3}$ and
4. $R_{B}\left(B R C^{2 l}\right)=\frac{8 l}{3}$.

Proof. Generator matrix $G_{A B}$ and [13] and by using theorem 3.1, then

$$
\begin{equation*}
R_{L}\left(B R C^{2 l}\right) \geq 4 l . \tag{4.1}
\end{equation*}
$$

Consider $y=\left(y_{1} \mid y_{2}\right) \in \mathbb{Z}^{2 l}$, where $y_{1}, y_{2} \in \mathbb{Z}^{2 l}$ and also take in y_{1}, ϱ_{j} appears j^{\prime} s, and in y_{2}, ϱ_{j} appears j^{\prime} s, with $\sum_{j} r_{j}=\sum_{j} s_{j}=l$ and $c_{j} \in\left\{\gamma\left(G_{A B}\right) \mid \gamma \in \mathbb{Z}^{2 l}\right\}, j=0$ to 8 .

Then, $d_{L}\left(y, B R C^{2 l}\right)=\min \left\{d_{L}\left(y, c_{j}\right) \mid j=0\right.$ to 8$\}$ is less than or equal to $2 l+2 l=$ $4 l$. Thus, $d_{L}\left(y, B R C^{2 l}\right) \leq 4 l$. Hence,

$$
\begin{equation*}
R_{L}\left(B R C^{2 l}\right) \leq 4 l \tag{4.2}
\end{equation*}
$$

By (4.1) and (4.2), thus $R_{L}\left(B R C^{2 l}\right)=4 l$.
The remaining Proof of the Theorem 4.1 is pursue from first part.
Corollary 4.2. Let

$$
\begin{equation*}
G_{A}=[\overbrace{11 \cdots 1}^{l} \overbrace{22 \cdots 2}^{l} \overbrace{44 \cdots 4}^{l} \overbrace{55 \cdots 5}^{l} \overbrace{77 \cdots 7}^{l} \overbrace{88 \cdots 8}^{l}] \tag{4.3}
\end{equation*}
$$

is a Type A with unit element in \mathbb{Z}. Then,

- $R_{L}\left(B R C^{6 l}\right)=12 l$,
- $R_{C E}\left(B R C^{6 l}\right)=\frac{40 l}{3}$,
- $R_{G}\left(B R C^{6 l}\right)=8 l$ and
- $R_{B}\left(B R C^{6 l}\right)=8 l$.

Proof. From (4.3) and use to Theorem 3.1, 3.2 and 4.1.
Corollary 4.3. Let

$$
\begin{equation*}
G_{B}=[\overbrace{33 \cdots 3}^{l} \overbrace{66 \cdots 6}^{l}] \tag{4.4}
\end{equation*}
$$

is a Type B with zero divisor element in \mathbb{Z}. Then,

- $R_{L}\left(B R C^{2 l}\right)=4 l$,
- $3 l \leq R_{C E}\left(B R C^{2 l}\right) \leq 4 l$,
- $R_{G}\left(B R C^{2 l}\right)=2 l$ and
- $3 l \leq R_{B}\left(B R C^{2 l}\right) \leq 4 l$.

Proof. In (4.4) is apply to Theorem 3.1, 3.2 and 4.1.

5. Different size of the length for Block repetition code

Let

$$
\begin{equation*}
G_{A B}=[\overbrace{11 \cdots 1}^{k_{1}} \overbrace{33 \cdots 3}^{k_{2}}] \tag{5.1}
\end{equation*}
$$

be the generated matrix for the two various block repetition code for a size of length is k_{1}, k_{2} and it is denoted by $B R C^{k_{1}+k_{2}}$. The parameters of $B R C p^{k_{1}+k_{2}}$ code is an $\left[k_{1}+k_{2}, 1, \min \left\{3 k_{1}, k_{1}+3 k_{2}\right\}, \min \left\{k_{1}, k_{1}+k_{2}\right\}, \min \left\{3 k_{1}, k_{1}+3 k_{2}\right\}, \min \left\{3 k_{1}, k_{1}+\right.\right.$ $\left.\left.3 k_{2}\right\}, \min \left\{3 k_{1}, 2 k_{1}+3_{2}\right\}\right]$.

Theorem 5.1.

- $R_{L}\left(B R C^{k}\right)=2 k$,
- $R_{C E}\left(B R C^{k}\right)=\frac{20 k_{1}}{9}+2 k_{2}$,
- $R_{G}\left(B R C^{k}\right)=\frac{4 k}{3}$ and
- $R_{B}\left(B R C^{k}\right)=\frac{4 k}{3}$, there with $k=\sum_{i=1}^{2} k_{i}$.

Proof. A generator matrix (5.1), use to Theorem 4.1 and apply the two different size of length $\left(k_{1}, k_{2}\right)$.

Corollary 5.2. Let

$$
\begin{equation*}
G_{B}=[\overbrace{33 \cdots 3}^{k_{1}} \overbrace{66 \cdots 6}^{k_{2}}] \tag{5.2}
\end{equation*}
$$

is a Type B with zero divisor element and two distinct length $\left(k_{1}, k_{2}\right)$ in \mathbb{Z}. Then

- $R_{L}\left(B R C^{k}\right)=2 k$,
- $\frac{3 k}{2} \leq R_{C E}\left(B R C^{k}\right) \leq 2 k$,
- $R_{G}\left(B R C^{k}\right)=k$ and
- $\frac{4 k}{3} \leq R_{B}\left(B R C^{k}\right) \leq 2 k$, here $k=\sum_{i=1}^{2} k_{i}$.

Proof. In (5.2) by two distinct length $\left(k_{1}, k_{2}\right)$ and different weights in put to Theorem 5.1.

Corollary 5.3. Let

$$
\begin{equation*}
G_{A}=[\overbrace{11 \cdots 1}^{k_{1}} \overbrace{22 \cdots 2}^{k_{2}} \overbrace{44 \cdots 4}^{k_{3}} \overbrace{55 \cdots 5}^{k_{4}} \overbrace{77 \cdots 7}^{k_{5}} \overbrace{88 \cdots 8}^{k_{6}}] . \tag{5.3}
\end{equation*}
$$

be a Type A with unit element and alternate size of length in \mathbb{Z}. Then

- $R_{L}\left(B R C^{k}\right)=2 k$,
- $R_{C E}\left(B R C^{k}\right)=\frac{20 k}{9}$,
- $R_{G}\left(B R C^{k}\right)=\frac{4 k}{3}$ and
- $R_{B}\left(B R C^{k}\right)=\frac{4 k}{3}$, where $k=\sum_{i=1}^{6} k_{i}$.

Proof. In (5.3) with alternate size of length and also weight is apply to Theorem 5.1.

References

[1] T. Aoki, P. Gaborit, M. Harada, M. Ozeki, P. Solé, On the covering radius of \mathbb{Z}_{4} codes and their lattices, IEEE Trans. Inform. Theory 45, no. 6, pp. 21622168(1999).
[2] C. Bachoc, Applications of coding theory to the construction of modular lattices, Journal of Combinatorial Theory, Series A 78 (1997) 92-119.
[3] E. Bardellotto, F. Fabris, Binary list decoding beyond covering radius. Journal of Information and Optimization Sciences 35 (5-6) (2014) 561-570.
[4] C.M. Bhandari, C. Durairajan, On the covering radius of Simplex codes, Journal of Discrete Mathematical Sciences and Cryptography 6 (1) (2003) 59-69.
[5] C.M. Bhandari, M.K. Gupta, A.K. Lal, On \mathbb{Z}_{4} Simplex codes and their Gray images, Springer Berlin Heidelberg, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 1719 (1999) 170-180.
[6] A. Bonnecaze, P. Solé, R.A. Calderbank, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory 41 (1995) 366-377.
[7] A. Bonnecaze, P. Solé, C. Bachoc, B. Mourrain, Type II codes over \mathbb{Z}_{4}, IEEE Trans. Inform. Theory 43 (1997) 969-976.
[8] A. Bonnecaze, P. Udaya, Cyclic codes and self-dual codes over $F_{2}+u F_{2}$, IEEE Trans. Inform. Theory 45 (4) (1999) 1250-1254.
[9] P. Chella Pandian, On the covering radius of codes over \mathbb{Z}_{4} with Chinese Euclidean weight, International Journal on Information Theory 4 (4) (2015) 1-8.
[10] P. Chella Pandian, On the covering radius of codes over \mathbb{Z}_{6}, International Journal on Information Theory 5 (2) (2016) 1-9.
[11] P. Chella Pandian, On codes over $\mathbb{Z}_{2^{3}}$ and its covering radius for Lee weight and homogeneous weight, Journal of Information and Optimization Sciences 39 (8) (2018) 1705-1715.
[12] P. Chella Pandian, Finding the covering radius of codes over $\mathbb{Z}_{3^{2}}$ by assigning homogeneous weight, Journal of Asia Mathematika 4 (3) (2020) 46-50.
[13] D.G. Cohen, G.M. Karpovsky, F.H. Mattson, R.J. Schatz , Covering radiussurvey and recent results, IEEE Trans. Inform. Theory 31 (3) (1985) 328-343.
[14] C. Cohen, A. Lobstein, A.J.N. Sloane, Further results on the covering radius of codes, IEEE Trans. Inform. Theory 32 (5) (1986) 680-694.
[15] B.K. Dass, Namita Sharma, Rashmi Verma, The packing radius of a poset block code, Discrete Mathematics, Algorithms and Applications 7 (4) 1550045 (10 pages) (2015).
[16] C. Durairajan, On Covering Codes and Covering Radius of Some Optimal Codes, Ph.D. Thesis, Department of Mathematics, IIT Kanpur, (1996).
[17] T. Gulliver, M. Harada, Codes Over $F_{3}+u F_{3}$ and Improvements to the Bounds on Ternary Linear Codes, University of Canterbury and Yamagata University, New Zealand and Japan, June 1998.
[18] K.M. Gupta, G.D. Glynn, T. Aaron Gulliver, On Senary Simplex Codes. In International Symposium, on Applied Algebra, Algebraic Algorithms and ErrorCorrecting Codes (Springer, Berlin Heidelberg) (2001) 112-121.
[19] R.A. Hammons, P.V. Kumar, A.R. Calderbank, P. Sol'e, The Z_{4}-linearity of Kerdock, Preparata, Gothals and related codes, IEEE Trans. Inform. Theory 40 (1994) 301-319.
[20] B. Yildiz, Z. Ödemis Özger, A generalization of the lee weight to $\mathbb{Z}_{p^{k}}$, TWMS J. App. Eng. Math. 2 (2) (2012) 145-153.

DOI: 10.7862/rf.2023.3
Chella Pandian P.
email: chellapandianpc@gmail.com, chella@andavancollege.ac.in
ORCID: 0000-0002-4112-868X
Department of Mathematics
Srimad Andavan Arts and Science College (Auto.)
Tiruchirappalli - 620005
Tamilnadu
INDIA

