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1. Introduction
In coding theory for the last five decades, many researchers has been attraction in
codes over finite rings and the special types of the rings Z2n, where 2n is the ring of
integers modulo.

The authors was discovered the best well known non-linear binary codes can be
constructed by cyclic codes and gray map over a finite ring Z4 in [19] and many
research articles has indicated codes over a finite ring Z4 received much attention
[1,5–9]. Coding theory, the covering radius is one of the important parameter to find
the maximum error-correcting capability of codes. In Binary code, [3, 4, 13–15], the
covering radius of codes are studied for linear and non-linear codes can be received
from codes over a finite ring Z4 via the gray map. In [10–12], the author to find lower
bound and upper bound of covering radius in a suitable of different types repetition
codes by using some finite rings with respect to various weight.

In this paper, to determine the covering radius of some attraction classes of rep-
etition codes over a finite commutative ring Z32 of interger modulo 32 by using to
different weight(distance).
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2. Preliminaries

Let Z32 be a finite set with nine elements {0, 1, 2, 3, 4, 5, 6, 7, 8} with two operation
⊕32 , ⊙32 is said to be a finite commutative ring. It is denoted by (Z32 , ⊕32 , ⊙32) = Z
with a characteristic 32. Let C ⊆ Z, then C is say that a code. A code C is called the
linear code, if the ring Z is an Z-submodule of Zl, where l is the length of a code(that
is, C = (11111), l(C) = 5, C1 = (3333), l(C1) = 4). The elements of C is called a
codeword of C.

A Gray Map h : Z32 → (Z3 × Z3) is defined by

h(0) = 00, h(1) = 01, h(2) = 02, h(3) = 10, h(4) = 11, h(5) = 12,

h(6) = 20, h(7) = 21, h(8) = 22,

then the Gray map h1 : Zl
32 → (Z3 × Z3)l is define h1(y) = (h(y1), h(y2), · · · , h(yn)),

where y = (y1, y2, · · · , yn) in [17].
Let y ∈ Zl be a codeword of code, that is y = (y1, y2, · · · , yn) and in [20], the Lee

weight of y as given

wL(y) =


0 if y = 0
1 if y = 1, 8
2 if y = 2, 7
3 if y = 3, 4, 5, 6.

Let yi ∈ Z be the codeword of Lee weight of yi is defined as
∑
i

wL(yi),i=0 to 8 .

If c1, c2 ∈ C, be any two distinct codewords of Lee distance is defined as dL(C) =
{dL(c1, c2)|c1 − c2 ̸= 0 and c1, c2 ∈ C}. The minimum Lee weight of C is dL(C) =
min{dL(c1, c2)|c1 − c2 ̸= 0 and c1, c2 ∈ C}. In C is a linear code C, thus dL(C) =
min{wL(c)|c ̸= 0 ∈ C}. Therefore, dL(c1, c2) = wL(c1 − c2). If C is a linear code of
length l over Z with the number of codewords W and the minimum Lee distance dL,
is said to be an (l, W, dL) code in Z. In C is a linear code of length l over Z, therefore
the Lee distance between z and C is defined as dL(z, C) = min{dL(z, c)|∀c ∈ C}, for
any z ∈ Zl.

The Chinese Euclidean weight of x is

wCE(y) =


0 if y = 0
1 if y = 1, 8
2 if y = 2, 7
3 if y = 3, 6
4 if y = 4, 5

in [18], where y = (y1, y2, · · · , yn) be a codeword of code over Zl.

The parameters of Chinese Euclidean weight code is an (l, W, dCE). In Chinese
Euclidean distance(weight), let c1, c2 ∈ Zl be any two different codewords is defined
as dCE(c1, c2) = wtCE(c1 − c2). Let C be a linear code of length l over Z. Then
dCE(z, C) = min{dCE(z, c)|∀c ∈ C}, for any z ∈ Zl.
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In Gray weight, let y ∈ Zl be a codeword of code, is define as

wG(y) =

 0 if y = 0
1 if y = 1, 2, 3 and 6
2 if otherwise

in [17].
In C is a linear code with Gray weight(distance), is an (l, W, dG) code. Define,

dG(c1, c2) = wtG(c1 − c2), where c1, c2 ∈ Zl and dG(z, C) = min{dG(z, c)|∀c ∈ C},
for any z ∈ Zl.

In [2], Let y ∈ Zl. The Bachoc weight of x is defined as

wB(y) =

 0 if y = 0
1 if y = 1, 2, 4, 5, 7, 8,
3 if y = 3, 6.

In C is a linear code with Bachoc weight(distance) is an (l, W, dB) code. Define,
dB(c1, c2) = wtB(c1 − c2), where c1, c2 ∈ Zn and dB(z, C) = min{dB(z, c)|∀c ∈ C},
for any z ∈ Zn.

Example 2.1. Let y = 1 3 4 7 2 ∈ Z5. Then,

wL(y) = wL(1) + wL(3) + wL(4) + wL(7) + wL(2) = 11,

wCE(y) = wCE(1) + wCE(3) + wCE(4) + wCE(7) + wCE(2) = 12,

wG(y) = wG(1) + wG(3) + wG(4) + wG(7) + wG(2) = 8 and

wB(y) = wB(1) + wB(3) + wB(4) + wB(7) + wB(2) = 10.

3. Repetition code with Covering radius of code in
Z

Let d be the distance of a code C in Z with respect to different distance(weight),
such as Lee weight, Chinese Euclidean weight, Gray weight and Bachoc weight. The
covering radius of a code C is

Rd(C) = max
w∈Zn

{
min
c∈C

{d(w, c)}
}

,

where C is a code and Rd(C) is a covering radius of the code C with distance d.

In Fq = {0, 1, γ2, · · · , γq−1} is a finite field. Let C be a q-ary repetition code C
over Fq. That is C = {γ̄ = (γγ · · · γ)|γ ∈ Fq} and the repetition code C is an [l, 1, l]
code. Therefore, the covering radius of the code C is ⌊ l(q−1)

q ⌋ by using in [16].
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Let C be a block repetition code of size l, the parameter of C is an [l(q−1), 1, l(q−

1)] be a generated by G = [
l︷ ︸︸ ︷

11 · · · 1
l︷ ︸︸ ︷

γ2γ2 · · · γ2 · · ·
l︷ ︸︸ ︷

γq−1γq−1 · · · γq−1]. In [16], thus the
covering radius of the code C is ⌊ l(q−1)2

q ⌋, since it will be equivalent to a repetition
code of length (q − 1)l.

A code C ⊆ Z is also linear code and is called the Generator matrix(G), if the
basis elements in a row of matrix.

In repetition code over Z, there are two type of repetition codes of length l viz.

1. Type A-(A Generator matrix(GA) with unit element in Z and its generated by
the code CA )

2. Type B-(A Generator matrix(GB) with zero divisor element in Z and its gen-
erated by the code CB )

Type A (GA) → [
l︷ ︸︸ ︷

11 · · · 1], [
l︷ ︸︸ ︷

22 · · · 2], [
l︷ ︸︸ ︷

44 · · · 4], [l, k = 1, di = l],

[
l︷ ︸︸ ︷

55 · · · 5], [
l︷ ︸︸ ︷

77 · · · 7], [
l︷ ︸︸ ︷

88 · · · 8] i = {L, CE, G, B}

Type B (GB) → [
l︷ ︸︸ ︷

33 · · · 3], [
l︷ ︸︸ ︷

66 · · · 6], (l, W = 3, dj = 3l),

[
l︷ ︸︸ ︷

36 36 · · · 36], [
l︷ ︸︸ ︷

63 63 · · · 63] j = {L, CE, G, B}

Theorem 3.1.

• RL(CA) = 2l,

• RL(CB) = 2l, here RL(CA(B)) is a covering radius of codes CA(B) for generator
matrix GA(B) by using Lee weight and l is a length of code in Type A and Type
B.

Proof. Let y ∈ Zl by ϱ0 times 0′s, ϱ1 times 1′s, ϱ2 times 2′s, ϱ3 times 3′s, ϱ4 times
4′s, ϱ5 times 5′s, ϱ6 times 6′s, ϱ7 times 7′s, ϱ8 times 8′s in y and

∑
i

ϱi = l and the

code ci ∈ {γ(CA)|γ ∈ Zl}, where i = 0 to 8. Then

dL(y, c0) = wtL(y − 00 · · · 0)
= 0ϱ0 + 1ϱ1 + 2ϱ2 + 3ϱ3 + 4ϱ4 + 5ϱ5 + 6ϱ6 + 7ϱ7 + 8ϱ8
= ϱ1 + 2ϱ2 + 3ϱ3 + 3ϱ4 + 3ϱ5 + 3ϱ6 + 2ϱ7 + ϱ8

dL(y, c0) = l − ϱ0 + ϱ2 + 2ϱ3 + 2ϱ4 + 2ϱ5 + 2ϱ6 + ϱ7.

Alike,

dL(y, c1) = l − ϱ1 + ϱ3 + 2ϱ4 + 2ϱ5 + 2ϱ6 + 2ϱ7 + ϱ8,
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dL(y, c2) = l − ϱ2 + ϱ0 + ϱ4 + 2ϱ5 + 2ϱ6 + 2ϱ7 + 2ϱ8,

dL(y, c3) = l − ϱ3 + 2ϱ0 + ϱ1 + ϱ5 + 2ϱ6 + 2ϱ7 + 2ϱ8,

dL(y, c4) = l − ϱ4 + 2ϱ0 + 2ϱ1 + ϱ2 + ϱ6 + 2ϱ7 + 2ϱ8,

dL(y, c5) = l − ϱ5 + 2ϱ0 + 2ϱ1 + 2ϱ2 + ϱ3 + ϱ7 + 2ϱ8,

dL(y, c6) = l − ϱ6 + 2ϱ0 + 2ϱ1 + 2ϱ2 + 2ϱ3 + ϱ4 + ϱ8,

dL(y, c7) = l − ϱ7 + ϱ0 + 2ϱ1 + 2ϱ2 + 2ϱ3 + 2ϱ4 + ϱ5,

dL(y, c8) = l − ϱ8 + ϱ1 + 2ϱ2 + 2ϱ3 + 2ϱ4 + 2ϱ5 + ϱ6.

Then, dL(y, CA) = min{dL(x, ci)|i = 0 to 8} ≤ 2l and rL(CA) ≤ 2l.

If y1 ∈ Zl, whereas y1 =
k︷ ︸︸ ︷

00 · · · 0
k︷ ︸︸ ︷

11 · · · 1
k︷ ︸︸ ︷

22 · · · 2
k︷ ︸︸ ︷

33 · · · 3
k︷ ︸︸ ︷

44 · · · 4
k︷ ︸︸ ︷

55 · · · 5
k︷ ︸︸ ︷

66 · · · 6
k︷ ︸︸ ︷

77 · · · 7
l−8k︷ ︸︸ ︷

88 · · · 8, here k = ⌊ l
32 ⌋. Thus, dL(y1, ci) = 12k, i = 0 to 8 and rL(CA) ≥

min{dL(y1, ci)| i = 0 to 8} ≥ 2l and hence, rL(CA) = 2l.

Let y =

l
2︷ ︸︸ ︷

33 · · · 3

l
2︷ ︸︸ ︷

000 · · · 0 ∈ Zl. The code CB = {γ(33 · · · 3) | γ ∈ Zl} and it is
generated by Type-B. Thus, rL(CB) ≥ 2l.

If y ∈ Zl be any codeword and take y has ϱi links i′s, with
∑
i

ϱi = l, where

i = 0 to 8. Then, rL(CB) ≤ 2l.

Theorem 3.2. For Rd(C) = maxw∈Zn {minc∈C {d(w, c)}} , where
d = { Chinese Euclidean weight, Gray weight and Bachoc weight }.

1. RCE(CA) = 20l
9 , 3n

2 ≤ RCE(CB) ≤ 2l,

2. RG(CA) = 4l
3 , RG(CB) = l and

3. RB(CA) = 4l
3 , 3l

2 ≤ RB(CB∗) ≤ 2l, where B∗ = Type-B and l is a length of
code in Type A and Type B.

Proof. The methods of proof is follows from Theorem 3.1, by using the Type A and
Type B with different weight, such as wCE(x), wG(x), and wB(x).

4. Same size of length in Block repetition code

Let BRC2l be a Block Repetition Code with length 2l and its generated by GAB =

[
l︷ ︸︸ ︷

11 · · · 1
l︷ ︸︸ ︷

33 · · · 3] is size of length(l) for each block and the parameters of BRC2l code
is an [2l, 1, 3l, 3l, 3l, 3l].
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Theorem 4.1.
1. RL(BRC2l) = 4l,

2. RCE(BRC2l) = 38l
9 ,

3. RG(BRC2l) = 7l
3 and

4. RB(BRC2l) = 8l
3 .

Proof. Generator matrix GAB and [13] and by using theorem 3.1, then

RL(BRC2l) ≥ 4l. (4.1)

Consider y = (y1 | y2) ∈ Z2l, where y1, y2 ∈ Z2l and also take in y1, ϱj appears j′s,
and in y2, ϱj appears j′s, with

∑
j

rj =
∑
j

sj = l and cj ∈ {γ(GAB)|γ ∈ Z2l}, j = 0 to 8.

Then, dL(y, BRC2l) = min{dL(y, cj)|j = 0 to 8} is less than or equal to 2l + 2l =
4l. Thus, dL(y, BRC2l) ≤ 4l. Hence,

RL(BRC2l) ≤ 4l (4.2)

By (4.1) and (4.2), thus RL(BRC2l) = 4l.
The remaining Proof of the Theorem 4.1 is pursue from first part.

Corollary 4.2. Let

GA = [
l︷ ︸︸ ︷

11 · · · 1
l︷ ︸︸ ︷

22 · · · 2
l︷ ︸︸ ︷

44 · · · 4
l︷ ︸︸ ︷

55 · · · 5
l︷ ︸︸ ︷

77 · · · 7
l︷ ︸︸ ︷

88 · · · 8] (4.3)

is a Type A with unit element in Z. Then,
• RL(BRC6l) = 12l,

• RCE(BRC6l) = 40l
3 ,

• RG(BRC6l) = 8l and

• RB(BRC6l) = 8l.

Proof. From (4.3) and use to Theorem 3.1, 3.2 and 4.1.

Corollary 4.3. Let

GB = [
l︷ ︸︸ ︷

33 · · · 3
l︷ ︸︸ ︷

66 · · · 6] (4.4)
is a Type B with zero divisor element in Z. Then,

• RL(BRC2l) = 4l,

• 3l ≤ RCE(BRC2l) ≤ 4l,

• RG(BRC2l) = 2l and

• 3l ≤ RB(BRC2l) ≤ 4l.

Proof. In (4.4) is apply to Theorem 3.1, 3.2 and 4.1.
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5. Different size of the length for Block repetition
code

Let

GAB = [
k1︷ ︸︸ ︷

11 · · · 1
k2︷ ︸︸ ︷

33 · · · 3] (5.1)

be the generated matrix for the two various block repetition code for a size of length
is k1, k2 and it is denoted by BRCk1+k2 . The parameters of BRCpk1+k2 code is
an [k1 + k2, 1, min{3k1, k1 + 3k2}, min{k1, k1 + k2}, min{3k1, k1 + 3k2}, min{3k1, k1 +
3k2}, min{3k1, 2k1 + 32}].

Theorem 5.1.

• RL(BRCk) = 2k,

• RCE(BRCk) = 20k1
9 + 2k2,

• RG(BRCk) = 4k
3 and

• RB(BRCk) = 4k
3 , there with k =

2∑
i=1

ki.

Proof. A generator matrix (5.1), use to Theorem 4.1 and apply the two different size
of length(k1, k2).

Corollary 5.2. Let

GB = [
k1︷ ︸︸ ︷

33 · · · 3
k2︷ ︸︸ ︷

66 · · · 6] (5.2)

is a Type B with zero divisor element and two distinct length(k1, k2) in Z. Then

• RL(BRCk) = 2k,

• 3k
2 ≤ RCE(BRCk) ≤ 2k,

• RG(BRCk) = k and

• 4k
3 ≤ RB(BRCk) ≤ 2k, here k =

2∑
i=1

ki.

Proof. In (5.2) by two distinct length(k1, k2) and different weights in put to Theorem
5.1.

Corollary 5.3. Let

GA = [
k1︷ ︸︸ ︷

11 · · · 1
k2︷ ︸︸ ︷

22 · · · 2
k3︷ ︸︸ ︷

44 · · · 4
k4︷ ︸︸ ︷

55 · · · 5
k5︷ ︸︸ ︷

77 · · · 7
k6︷ ︸︸ ︷

88 · · · 8]. (5.3)

be a Type A with unit element and alternate size of length in Z. Then
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• RL(BRCk) = 2k,

• RCE(BRCk) = 20k
9 ,

• RG(BRCk) = 4k
3 and

• RB(BRCk) = 4k
3 , where k =

6∑
i=1

ki.

Proof. In (5.3) with alternate size of length and also weight is apply to Theorem
5.1.
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