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Abstract: A method of solving a non-cooperative game defined on a
product of staircase-function strategy spaces is presented. The spaces can
be finite and continuous as well. The method is based on stacking equilib-
ria of “short” non-cooperative games, each defined on an interval where
the pure strategy value is constant. In the case of finite non-cooperative
games, which factually are multidimensional-matrix games, the equilibria
are considered in general terms, so they can be in mixed strategies as well.
The stack is any combination (succession) of the respective equilibria of the
“short” multidimensional-matrix games. Apart from the stack, there are
no other equilibria in this “long” (staircase-function) multidimensional-
matrix game. An example of staircase-function quadmatrix game is pre-
sented to show how the stacking is fulfilled for a case of when every “short”
quadmatrix game has a single pure-strategy equilibrium. The presented
method, further “breaking” the initial staircase-function game into a suc-
cession of “short” games, is far more tractable than a straightforward
approach to solving directly the “long” non-cooperative game would be.
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1. Introduction

Non-cooperative games are applied for rationalizing the distribution of limited re-
sources (e. g., see [23, 4, 26, 15]). A simple case of the non-cooperative game is
a finite non-cooperative game, which always has an equilibrium, either in pure or
mixed strategies [22, 23, 10, 9]. An infinite or continuous non-cooperative game is far
more complicated as, opposed to a finite game, an equilibrium is not always deter-
minable. Moreover, a solution of an infinite game, in which a strategy has an infinite
support, is not practically realizable [8, 23, 21, 12, 15]. This is due to a finite number
of factual actions of a player. Therefore, any game is approximated to a finite one,
which always has an equilibrium [22].

A finite non-cooperative game is easily rendered to a multidimensional-matrix
game [13, 17], wherein the pure strategy can be a complex action through time rather
than an elementary action [4, 26, 3, 1, 17, 18]. Although the game rendering can be
fulfilled regardless of the pure strategy complexity [22, 13], such rendering is impos-
sible if the set of the player’s strategies is either infinite or continuous. If the player’s
pure strategy is a function (commonly, it is a function of time), and every player
possesses a finite set of such function-strategies, the rendering results in huge mul-
tidimensional payoff matrices. This is a far more complicated finite game, in which
the player’s payoff is a functional [25, 16, 17, 18]. Regardless of the function-strategy
set finiteness, each player’s functional maps every set of functions (pure strategies of
the players defined on a time interval) into a real value. However, a finite game is
not obtained by just breaking (sampling) a time interval, on which the pure strategy
is defined, into a set of subintervals, on which the strategy could be approximately
considered constant. This is so because of the continuity of possible values of the
strategy on a subinterval. The continuity is removed by sampling along the strategy
value axis [13, 16]. Then the set of function-strategies becomes finite, and that results
in a finite non-cooperative game. The size and properties of such a game strongly
depend on both samplings [13, 17].

2. Motivation

The number of factual actions of a player in any game has a natural limit, whichever
the form of the pure strategy is [23, 10, 9, 12]. Nevertheless, if the rules of a system
which is game-modeled are defined and administered beforehand, the administrator
is likely to define (or constrain) the form of the strategies players will use [21, 26, 24,
16]. The most trivial case is when the player’s pure strategy is an elementary action
whose duration is negligibly short and thus is represented as just a time point. This
case is exhaustively studied as bimatrix, trimatrix, and dyadic games [6, 22, 23, 15].
In a more complicated case, the player’s pure strategy is a function of time [25, 16], so
the player’s action is a complex process whose duration cannot be reduced to a time
point. A way to appropriately administer the players’ actions is to constrain them to
staircase functions whose points of discontinuities (breakpoints) have to be the same
for all the players [20, 24, 16]. Along with the discrete time, possible values of the
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player’s pure strategy should be discrete as well. Then the game can be represented
as a multidimensional-matrix game, in which the player’s selection of a pure strategy
means using a staircase function on a time interval whereon every pure strategy is
defined.

It is easy to get convinced of that the number of the player’s pure strategies in the
multidimensional-matrix staircase-function game grows immensely as the number of
breakpoints (“stair” intervals) or/and the number of possible values of the player’s
pure strategy increases. For instance, if the number of intervals is 4, and the number
of possible values of the player’s pure strategy is 5, then there are 54 = 625 possible
pure strategies at this player, where every strategy is a 4-interval 5-staircased function
of time. Whereas the respective bimatrix 625 × 625 game still may be solved in a
reasonable time, the respective trimatrix 625 × 625 × 625 game appears to be big
enough (having 244140625 situations), let alone 625×625×625×625 quadmatrix game
whose number of situations is 152587890625 (more than 152 billion). This trivialized
example shows that a finite staircase-function game becomes practically intractable
to solve it when there are more than two players. An exclusion is the ultimately
trivialized instance, when every player has 2-interval 2-staircased function-strategies.
Then the respective 4×4, 4×4×4, 4×4×4×4, ..., games can be solved fast enough

even for 10 players, although the
10

×
n=1

4 game has 1048576 situations. It is worth

noting that it may take no less than 0.4 seconds to solve a
6

×
n=1

4 game on a laptop

with an Intel Core i7 processor, whereas a 10×10×10×10 game is solved at least in 1.1
seconds. When every strategy, say, is a 6-interval 10-staircased function of time, even
the respective bimatrix 106 × 106 staircase-function game appears to be intractably
gigantic (there is a trillion situations in this game!). This is a simple example of the
intractability even for a bimatrix game, let alone finite staircase-function games with
three or more players. This means that, instead of rendering a non-cooperative game
defined on a product of staircase-function finite spaces to a multidimensional-matrix
game, a tractable method of solving it should be suggested.

3. Objective and tasks to be fulfilled

Issuing from the impracticability of rendering a finite non-cooperative game with
staircase-function strategies to a multidimensional-matrix game, the objective is to
develop a tractable method of solving non-cooperative games defined on a product of
staircase-function finite spaces. For achieving the objective, the following five tasks
are to be fulfilled:

1. To formalize a non-cooperative game (of any number of players), in which the
players’ strategies are staircase functions. In such a game, the set of the player’s
pure strategies is a continuum of staircase functions of time. Herein, the time can be
thought of as it is discrete.

2. To discretize the set of possible values of the player’s pure strategy so that the
game be defined on a product of staircase-function finite spaces.
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3. To formalize a method of solving non-cooperative games defined on a product
of staircase-function finite spaces.

4. To consider an example of solving a finite game defined on a product of
staircase-function spaces. A special attention should be paid to the computation
time.

5. To discuss and conclude on applicability and significance of the method, as well
as its possible drawbacks and limitations.

4. A non-cooperative game with staircase-function
strategies

Consider a non-cooperative game of N players, N ∈ N\ {1}. In this game the player’s
pure strategy is a function of time. Let each of the players use time-varying strategies
defined almost everywhere on interval [t1; t2] by t2 > t1. Denote a strategy of the
n-th player by xn (t), n = 1, N . These functions are presumed to be bounded, i. e.

x(min)
n ⩽ xn (t) ⩽ x(max)

n by x(min)
n < x(max)

n (1)

defined almost everywhere on [t1; t2]. Besides, the square of the function-strategy is
presumed to be Lebesgue-integrable. Thus, pure strategies of the player belong to a
rectangular functional space of functions of time:

Xn =

=
{
xn (t) , t ∈ [t1; t2] , t1 < t2 : x

(min)
n ⩽ x (t) ⩽ x

(max)
n by x

(min)
n < x

(max)
n

}
⊂

⊂ L2 [t1; t2] (2)

is the set of the n-th player’s pure strategies, n = 1, N .
The player’s payoff in situation

{xn (t)}Nn=1 (3)

is presumed to be an integral functional [2, 11, 18, 19]. Thus, the n-th player’s payoff
in situation (3) is

Kn

(
{xi (t)}Ni=1

)
=

∫
[t1; t2]

fn

(
{xi (t)}Ni=1 , t

)
dµ (t) (4)

by a function

fn

(
{xi (t)}Ni=1 , t

)
(5)

of time functions (3) explicitly including time t. Therefore, the continuous N -person
game 〈

{Xn}Nn=1 ,
{
Kn

(
{xi (t)}Ni=1

)}N

n=1

〉
(6)
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is defined on product
N

×
n=1

Xn ⊂
N

×
n=1

L2 [t1; t2] (7)

of rectangular functional spaces (2) of players’ pure strategies.
First, it is presumed that game (6) is administered so that the players are forced to

use pure strategies {xi (t)}Ni=1 such that they change their values for a finite number
of times. Denote by M the number of intervals at which the player’s pure strategy is
constant, where M ∈ N\ {1}. Then the player’s pure strategy is a staircase function

having only M different values. If
{
τ (l)

}M−1

l=1
are time points at which the staircase-

function strategy changes its value, where

t1 = τ (0) < τ (1) < τ (2) < . . . < τ (M−1) < τ (M) = t2, (8)

then {
xn

(
τ (l)

)}M

l=0
(9)

are the values of the n-th player’s strategy in a play-off of game (6), n = 1, N . The
staircase-function strategies are right-continuous [2]:

lim
ε>0
ε→0

xn

(
τ (l) + ε

)
= xn

(
τ (l)

)
for l = 1, M − 1 by n = 1, N, (10)

whereas

lim
ε>0
ε→0

xn

(
τ (l) − ε

)
̸= xn

(
τ (l)

)
for l = 1, M − 1 by n = 1, N. (11)

As an exception,

lim
ε>0
ε→0

xn

(
τ (M) − ε

)
= xn

(
τ (M)

)
, (12)

so
xn

(
τ (M−1)

)
= xn

(
τ (M)

)
∀n = 1, N.

Then constant values (9) by (8) mean that game (6) can be thought of as it is a
succession of M continuous games〈{[

x(min)
n ; x(max)

n

]}N

n=1
,
{
Kn

(
{αil}Ni=1

)}N

n=1

〉
(13)

defined on hyperparallelepiped

N

×
n=1

[
x(min)
n ; x(max)

n

]
(14)

by

αnl = xn (t) ∈
[
x
(min)
n ; x

(max)
n

]
by n = 1, N
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∀ t ∈
[
τ (l−1); τ (l)

)
for l = 1, M − 1 and ∀ t ∈

[
τ (M−1); τ (M)

]
, (15)

where the factual players’ payoffs in situation {αil}Ni=1 are

Kn

(
{αil}Ni=1

)
=

∫
[τ(l−1); τ(l))

fn

(
{αil}Ni=1 , t

)
dµ (t) ∀ l = 1, M − 1 (16)

by

Kn

(
{αiM}Ni=1

)
=

∫
[τ(M−1); τ(M)]

fn

(
{αiM}Ni=1 , t

)
dµ (t) (17)

for n = 1, N . So, let such game (6) be called staircase [18, 19]. A pure-strategy

situation in staircase game (6) is a succession of M situations {αil}Ni=1 in games (13).

Theorem 1. In a pure-strategy situation of staircase game (6), represented as a
succession of M games (13), functional (4) is re-written as an interval-wise sum

Kn

(
{xi (t)}Ni=1

)
=

=

M−1∑
l=1

∫
[τ(l−1); τ(l))

fn

(
{αil}Ni=1 , t

)
dµ (t) +

+

∫
[τ(M−1); τ(M)]

fn

(
{αiM}Ni=1 , t

)
dµ (t). (18)

Proof. Situation {αil}Ni=1 is tied to half-interval
[
τ (l−1); τ (l)

)
by l = 1, M − 1 and

to interval
[
τ (M−1); τ (M)

]
by l =M . Function (5) in this situation is some function

of time t. Denote this function by ψnl (t). For situation {αil}Ni=1 function

ψnl (t) = 0 ∀ t /∈
[
τ (l−1); τ (l)

)
, (19)

and for situation {αiM}Ni=1 function

ψnM (t) = 0 ∀ t /∈
[
τ (M−1); τ (M)

]
. (20)

Therefore,

fn

(
{xi (t)}Ni=1 , t

)
=

M∑
l=1

ψnl (t) (21)

in a pure-strategy situation {xi (t)}Ni=1 of staircase game (6), by using (19) and (20).
Consequently,

Kn

(
{xi (t)}Ni=1

)
=

∫
[t1; t2]

fn

(
{xi (t)}Ni=1 , t

)
dµ (t) =
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=

M−1∑
l=1

∫
[τ(l−1); τ(l))

ψnl (t) dµ (t) +

∫
[τ(M−1); τ(M)]

ψnM (t) dµ (t) =

=

M−1∑
l=1

∫
[τ(l−1); τ(l))

fn

(
{αil}Ni=1 , t

)
dµ (t) +

+

∫
[τ(M−1); τ(M)]

fn

(
{αiM}Ni=1 , t

)
dµ (t) (22)

in a pure-strategy situation {xi (t)}Ni=1 of staircase game (6).

In other words, if every equilibrium situation in pure strategies in game (6) on
product (7) by conditions (1)— (5) is (or forced to be) of staircase functions satisfying
conditions (8)— (12), then this game is equivalent to the succession of M games (13)
defined on parallelepiped (14) by (8)— (12) and (15)— (18). In this case game (6)
can be represented by the succession of games (13).

Theorem 2. If each of M games (13) by (8)—(12) and (15)—(18) has a single
equilibrium situation in pure strategies, and game (6) on product (7) by conditions
(1)— (5) is equivalent to the succession of these games, then the equilibrium situation
in pure strategies in game (6) is determined by independently finding pure-strategy
equilibria in M games (13), whereupon these equilibria are successively stacked.

Proof. First, the equivalency means that game (6) has only staircase pure-strategy
equilibria. Next, it should be proved that game (6) has a pure-strategy equilibrium

situation, which is a successive stack of theM “short” games (13). Let
{
{α∗

il}
N
i=1

}M

l=1
be pure-strategy equilibria in games (13) by (8)— (12) and (15)— (18). Then

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
⩽ Kn

(
{α∗

il}
N
i=1

)
∀ αnl ∈

[
x
(min)
n ; x

(max)
n

]
and ∀n = 1, N and ∀ l = 1, M. (23)

Inequalities (23) are re-written using statements (15)— (18):

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
=

=

∫
[τ(l−1); τ(l))

fn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl} , t

)
dµ (t) ⩽

⩽
∫

[τ(l−1); τ(l))

fn

(
{α∗

il}
N
i=1 , t

)
dµ (t) = Kn

(
{α∗

il}
N
i=1

)

∀ αnl ∈
[
x
(min)
n ; x

(max)
n

]
and ∀n = 1, N and ∀ l = 1, M − 1, (24)



86 V. Romanuke

Kn

({
{α∗

iM}Ni=1 \ {α
∗
nM}

}
∪ {αnM}

)
=

=

∫
[τ(M−1); τ(M)]

fn

({
{α∗

iM}Ni=1 \ {α
∗
nM}

}
∪ {αnM} , t

)
dµ (t) ⩽

⩽
∫

[τ(M−1); τ(M)]

fn

(
{α∗

iM}Ni=1 , t
)
dµ (t) =

= Kn

(
{α∗

iM}Ni=1

)
∀ αnM ∈

[
x
(min)
n ; x

(max)
n

]
and ∀n = 1, N. (25)

Owing to Theorem 1,

M∑
l=1

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
⩽

M∑
l=1

Kn

(
{α∗

il}
N
i=1

)
∀n = 1, N. (26)

Therefore, the successive stack of pure-strategy equilibria
{
{α∗

il}
N
i=1

}M

l=1
is a pure-

strategy equilibrium in game (6). Obviously, games (13) can be solved independently,
whose equilibria are stacked afterwards to form the pure-strategy equilibrium in game
(6).

In fact, Theorem 2 claims that if each of N “short” games (13) has a single pure-
strategy equilibrium, then the solution of N -person game (6) can be determined in a
simpler way, by solving games (13) and successively stacking their equilibria. They are
solved in parallel (independently), without caring of the succession. However, Theo-
rem 2 does not determine a probability (likelihood) of the case when every “short”
game has a single pure-strategy equilibrium. Obviously, the likelihood decays as the
number of intervals increases.

Besides, Theorem 2 does not directly imply that the stacked equilibrium in game
(6) is single. The question of whether the stacked equilibrium in game (6) is single or
not is answered by the following assertion.

Theorem 3. If each of M games (13) by (8)—(12) and (15)—(18) has a single
equilibrium situation in pure strategies, and game (6) on product (7) by conditions
(1)— (5) is equivalent to the succession of these games, then the equilibrium situation
in pure strategies in game (6) is single being the successive stack of the “short” games
equilibria.

Proof. The pure-strategy equilibrium in game (6) is constructed according to The-

orem 2, i. e., it is the successive stack of pure-strategy equilibria
{
{α∗

il}
N
i=1

}M

l=1
. Let

this equilibrium be referred to as the{
{α∗

il}
N
i=1

}M

l=1
-stack equilibrium. (27)
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Suppose that there is another pure-strategy equilibrium in game (6). Without losing
generality, let this equilibrium differ from (27) in just that the first player uses some

α
(0)
1k ∈

[
x
(min)
1 ; x

(max)
1

]
instead of α∗

1k by some k ∈
{
1, M

}
. So, this is the{{

{α∗
il}

N
i=1

}
l∈{1, M}\{k}

∪
{
α
(0)
1k , {α

∗
ik}

N
i=2

}}
-stack equilibrium,

which means that∑
l∈{1, M}\{k}

K1

(
α1l, {α∗

il}
N
i=2

)
+K1

(
α1k, {α∗

ik}
N
i=2

)
⩽

⩽
∑

l∈{1, M}\{k}
K1

(
{α∗

il}
N
i=1

)
+K1

(
α
(0)
1k , {α

∗
ik}

N
i=2

)
, (28)

∑
l∈{1, M}\{k}

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
+

+Kn

({{
α
(0)
1k , {α

∗
ik}

N
i=2

}
\ {α∗

nk}
}
∪ {αnk}

)
⩽

⩽
∑

l∈{1, M}\{k}
Kn

(
{α∗

il}
N
i=1

)
+Kn

(
α
(0)
1k , {α

∗
ik}

N
i=2

)
∀n = 2, N, (29)

i. e.,

K1

(
α1l, {α∗

il}
N
i=2

)
⩽ K1

(
{α∗

il}
N
i=1

)
∀ α1l ∈

[
x
(min)
1 ; x

(max)
1

]
and ∀ l ∈

{
1, M

}
\ {k} (30)

by

K1

(
α1k, {α∗

ik}
N
i=2

)
⩽ K1

(
α
(0)
1k , {α

∗
ik}

N
i=2

)
∀ α1k ∈

[
x
(min)
1 ; x

(max)
1

]
, (31)

and

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
⩽ Kn

(
{α∗

il}
N
i=1

)
∀ αnl ∈

[
x
(min)
n ; x

(max)
n

]
and ∀ l ∈

{
1, M

}
\ {k} and ∀n = 2, N (32)

by

Kn

({{
α
(0)
1k , {α∗

ik}
N
i=2

}
\ {α∗

nk}
}
∪ {αnk}

)
⩽ Kn

(
α
(0)
1k , {α∗

ik}
N
i=2

)
∀ αnk ∈

[
x
(min)
n ; x

(max)
n

]
and ∀n = 2, N. (33)
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Inequalities (31) and (33) imply that
{
α
(0)
1k , {α∗

ik}
N
i=2

}
is a pure-strategy equilibrium

at the k-th interval (in the k-th game), which is impossible due to every interval
has a single pure-strategy equilibrium. The impossibility of the other pure-strategy
equilibrium for the remaining players in such a case is proved symmetrically.

Suppose that the other pure-strategy equilibrium differs from (27) in that the

first player uses some α
(0)
1k1

∈
[
x
(min)
1 ; x

(max)
1

]
instead of α∗

1k1
by some k1 ∈

{
1, M

}
and the second player uses some α

(0)
2k2

∈
[
x
(min)
2 ; x

(max)
2

]
instead of α∗

2k2
by some

k2 ∈
{
1, M

}
. So, this is the{{

{α∗
il}

N
i=1

}
l∈{1, M}\{k1}

∪
{
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

}}
-stack equilibrium (34)

if k1 = k2, and is the {{
{α∗

il}
N
i=1

}
l∈{1, M}\{k1, k2}

∪

∪
{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
∪
{
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

}}
-stack equilibrium (35)

if k1 ̸= k2. Thus, (34) means that∑
l∈{1, M}\{k1}

K1

(
α1l, {α∗

il}
N
i=2

)
+K1

(
α1k1

, α
(0)
2k1
,
{
α∗
ik1

}N

i=3

)
⩽

⩽
∑

l∈{1, M}\{k1}

K1

(
{α∗

il}
N
i=1

)
+K1

(
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

)
(36)

and ∑
l∈{1, M}\{k1}

K2

(
α∗
1l, α2l, {α∗

il}
N
i=3

)
+K2

(
α
(0)
1k1
, α2k1

,
{
α∗
ik1

}N

i=3

)
⩽

⩽
∑

l∈{1, M}\{k1}

K2

(
{α∗

il}
N
i=1

)
+K2

(
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

)
(37)

and ∑
l∈{1, M}\{k1}

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
+

+Kn

({{
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

}
\
{
α∗
nk1

}}
∪ {αnk1

}
)
⩽

⩽
∑

l∈{1, M}\{k1}

Kn

(
{α∗

il}
N
i=1

)
+Kn

(
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

)
∀n = 3, N, (38)
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i. e., inequalities (30) by k = k1 and inequality

K1

(
α1k1 , α

(0)
2k1
,
{
α∗
ik1

}N

i=3

)
⩽ K1

(
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

)
∀ α1k1 ∈

[
x
(min)
1 ; x

(max)
1

]
(39)

hold along with (23) for n = 1, inequalities

K2

(
α∗
1l, α2l, {α∗

il}
N
i=3

)
⩽ K2

(
{α∗

il}
N
i=1

)
∀ α2l ∈

[
x
(min)
2 ; x

(max)
2

]
and ∀ l ∈

{
1, M

}
\ {k1} (40)

and inequality

K2

(
α
(0)
1k1
, α2k1 ,

{
α∗
ik1

}N

i=3

)
⩽ K2

(
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

)
∀ α2k1 ∈

[
x
(min)
2 ; x

(max)
2

]
(41)

hold along with (23) for n = 2, inequalities (32) by k = k1 and inequality

Kn

({{
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

}
\
{
α∗
nk1

}}
∪ {αnk1

}
)
⩽

⩽ Kn

(
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

)
∀ αnk1

∈
[
x
(min)
n ; x

(max)
n

]
and ∀n = 3, N (42)

hold along with (23). Inequalities (39)— (42) imply that
{
α
(0)
1k1
, α

(0)
2k1
,
{
α∗
ik1

}N

i=3

}
is a pure-strategy equilibrium at the k1-th interval (in the k1-th game), which is
impossible. The same conclusion is valid for a two-person non-cooperative game,

where (34), (36), (37), (39), (41) are written by retaining
{
α∗
ik1

}N

i=3
= ∅, {α∗

il}
N
i=3 = ∅,

and (38), (42) are omitted. If (35) is true, then∑
l∈{1, M}\{k1, k2}

K1

(
α1l, {α∗

il}
N
i=2

)
+

+K1

(
α1k1 ,

{
α∗
ik1

}N

i=2

)
+K1

(
α1k2 , α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
⩽

⩽
∑

l∈{1, M}\{k1, k2}

K1

(
{α∗

il}
N
i=1

)
+

+K1

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K1

(
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
(43)

and ∑
l∈{1, M}\{k1, k2}

K2

(
α∗
1l, α2l, {α∗

il}
N
i=3

)
+
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+K2

(
α
(0)
1k1
, α2k1

,
{
α∗
ik1

}N

i=3

)
+K2

(
α∗
1k2
, α2k2

,
{
α∗
ik2

}N

i=3

)
⩽

⩽
∑

l∈{1, M}\{k1, k2}

K2

(
{α∗

il}
N
i=1

)
+

+K2

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K2

(
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
(44)

and ∑
l∈{1, M}\{k1, k2}

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
+

+Kn

({{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
\
{
α∗
nk1

}}
∪ {αnk1

}
)
+

+Kn

({{
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

}
\
{
α∗
nk2

}}
∪ {αnk2

}
)
⩽

⩽
∑

l∈{1, M}\{k1, k2}

Kn

(
{α∗

il}
N
i=1

)
+Kn

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+

+Kn

(
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
∀n = 3, N, (45)

i. e., inequalities

K1

(
α1l, {α∗

il}
N
i=2

)
⩽ K1

(
{α∗

il}
N
i=1

)
∀ α1l ∈

[
x
(min)
1 ; x

(max)
1

]
and ∀ l ∈

{
1, M

}
\ {k1, k2} (46)

and inequality

K1

(
α1k1 ,

{
α∗
ik1

}N

i=2

)
+K1

(
α1k2 , α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
⩽

⩽ K1

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K1

(
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
∀ α1k1 ∈

[
x
(min)
1 ; x

(max)
1

]
and ∀ α1k2 ∈

[
x
(min)
1 ; x

(max)
1

]
(47)

hold along with (23) for n = 1, inequalities

K2

(
α∗
1l, α2l, {α∗

il}
N
i=3

)
⩽ K2

(
{α∗

il}
N
i=1

)
∀ α2l ∈

[
x
(min)
2 ; x

(max)
2

]
and ∀ l ∈

{
1, M

}
\ {k1, k2} (48)

and inequality

K2

(
α
(0)
1k1
, α2k1 ,

{
α∗
ik1

}N

i=3

)
+K2

(
α∗
1k2
, α2k2 ,

{
α∗
ik2

}N

i=3

)
⩽

⩽ K2

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K2

(
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
∀ α2k1 ∈

[
x
(min)
2 ; x

(max)
2

]
and ∀ α2k2 ∈

[
x
(min)
2 ; x

(max)
2

]
(49)
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hold along with (23) for n = 2, inequalities

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
⩽ Kn

(
{α∗

il}
N
i=1

)
∀ αnl ∈

[
x
(min)
n ; x

(max)
n

]
and ∀ l ∈

{
1, M

}
\ {k1, k2} and ∀n = 3, N (50)

and inequality

Kn

({{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
\
{
α∗
nk1

}}
∪ {αnk1

}
)
+

+Kn

({{
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

}
\
{
α∗
nk2

}}
∪ {αnk2

}
)
⩽

⩽ Kn

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+Kn

(
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
∀ αnk1

∈
[
x
(min)
n ; x

(max)
n

]
and ∀ αnk2

∈
[
x
(min)
n ; x

(max)
n

]
and ∀n = 3, N (51)

hold along with (23). Plugging α1k2
= α∗

1k2
in the left side of inequality (47) and

plugging α2k2
= α

(0)
2k2

in the left side of inequality (49) and plugging αnk2
= α∗

nk2
in

the left side of inequality (51) for n = 3, N gives inequalities

K1

(
α1k1

,
{
α∗
ik1

}N

i=2

)
⩽ K1

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
∀ α1k1

∈
[
x
(min)
1 ; x

(max)
1

]
, (52)

K2

(
α
(0)
1k1
, α2k1

,
{
α∗
ik1

}N

i=3

)
⩽ K2

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
∀ α2k1

∈
[
x
(min)
2 ; x

(max)
2

]
, (53)

Kn

({{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
\
{
α∗
nk1

}}
∪ {αnk1}

)
⩽ Kn

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
∀ αnk1 ∈

[
x
(min)
n ; x

(max)
n

]
and ∀n = 3, N, (54)

which are impossible due to
{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
is not a pure-strategy equilibrium.

Therefore, the supposition about (34) and (35) are true is contradictory. The same
conclusion is valid for a two-person non-cooperative game, where (35), (43), (44),

(47)— (49), (53) are written by retaining
{
α∗
ik2

}N

i=3
= ∅, {α∗

il}
N
i=3 = ∅,

{
α∗
ik1

}N

i=3
= ∅,

and (45), (50), (51), (54) are omitted.
Now, for the case of N ⩾ 3, suppose that the other pure-strategy equilibrium dif-

fers from (27) in that the first player uses some α
(0)
1k1

∈
[
x
(min)
1 ; x

(max)
1

]
instead of α∗

1k1

by some k1 ∈
{
1, M

}
, the second player uses some α

(0)
2k2

∈
[
x
(min)
2 ; x

(max)
2

]
instead

of α∗
2k2

by some k2 ∈
{
1, M

}
, and the third player uses some α

(0)
3k3

∈
[
x
(min)
3 ; x

(max)
3

]
instead of α∗

3k3
by some k3 ∈

{
1, M

}
. So, this is the{{

{α∗
il}

N
i=1

}
l∈{1, M}\{k1, k2, k3}

∪
{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
∪
{
α∗
1k2
, α

(0)
2k2
,
{
α∗
ik2

}N

i=3

}
∪
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∪
{{{

α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

}}}
-stack equilibrium. (55)

Thus, (55) means that ∑
l∈{1, M}\{k1, k2, k3}

K1

(
α1l, {α∗

il}
N
i=2

)
+

+K1

(
α1k1

,
{
α∗
ik1

}N

i=2

)
+K1

(
α1k2

, α
(0)
2k2
,
{
α∗
ik2

}N

i=3

)
+

+K1

(
α1k3

,
{{
α∗
ik3

}N

i=2
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
⩽

⩽
∑

l∈{1, M}\{k1, k2, k3}

K1

(
{α∗

il}
N
i=1

)
+

+K1

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K1

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪
{
α
(0)
2k2

})
+

+K1

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
(56)

and ∑
l∈{1, M}\{k1, k2, k3}

K2

({
{α∗

il}
N
i=1 \ {α

∗
2l}

}
∪ {α2l}

)
+

+K2

(
α
(0)
1k1
, α2k1

,
{
α∗
ik1

}N

i=3

)
+

+K2

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪ {α2k2

}
)
+K2

(
α∗
1k3
, α2k3

, α
(0)
3k3
,
{
α∗
ik3

}N

i=4

)
⩽

⩽
∑

l∈{1, M}\{k1, k2, k3}

K2

(
{α∗

il}
N
i=1

)
+

+K2

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K2

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪
{
α
(0)
2k2

})
+

+K2

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
(57)

and ∑
l∈{1, M}\{k1, k2, k3}

K3

({
{α∗

il}
N
i=1 \ {α

∗
3l}

}
∪ {α3l}

)
+

+K3

(
α
(0)
1k1
,
{{
α∗
ik1

}N

i=2
\
{
α∗
3k1

}}
∪ {α3k1

}
)
+

+K3

(
α∗
1k2
, α

(0)
2k2
, α3k2

,
{
α∗
ik2

}N

i=4

)
+K3

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪ {α3k3

}
)
⩽

⩽
∑

l∈{1, M}\{k1, k2, k3}

K3

(
{α∗

il}
N
i=1

)
+

+K3

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K3

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪
{
α
(0)
2k2

})
+
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+K3

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
(58)

and ∑
l∈{1, M}\{k1, k2, k3}

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
+

+Kn

(
α
(0)
1k1
,
{{
α∗
ik1

}N

i=2
\
{
α∗
nk1

}}
∪ {αnk1}

)
+

+Kn

(
α∗
1k2
, α

(0)
2k2
,
{{
α∗
ik2

}N

i=3
\
{
α∗
nk2

}}
∪ {αnk2}

)
+

+Kn

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3
, α∗

nk3

}}
∪
{
α
(0)
3k3
, αnk3

})
⩽

⩽
∑

l∈{1, M}\{k1, k2, k3}

Kn

(
{α∗

il}
N
i=1

)
+Kn

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+

+Kn

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪
{
α
(0)
2k2

})
+

+Kn

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
∀n = 4, N, (59)

i. e., inequalities

K1

(
α1l, {α∗

il}
N
i=2

)
⩽ K1

(
{α∗

il}
N
i=1

)
∀ α1l ∈

[
x
(min)
1 ; x

(max)
1

]
and ∀ l ∈

{
1, M

}
\ {k1, k2, k3} (60)

and inequality

K1

(
α1k1 ,

{
α∗
ik1

}N

i=2

)
+K1

(
α1k2 , α

(0)
2k2
,
{
α∗
ik2

}N

i=3

)
+

+K1

(
α1k3 ,

{{
α∗
ik3

}N

i=2
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
⩽

⩽ K1

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K1

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪
{
α
(0)
2k2

})
+

+K1

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
∀ α1k1 ∈

[
x
(min)
1 ; x

(max)
1

]
and ∀ α1k2 ∈

[
x
(min)
1 ; x

(max)
1

]
and ∀ α1k3 ∈

[
x
(min)
1 ; x

(max)
1

]
(61)

hold along with (23) for n = 1, inequalities

K2

({
{α∗

il}
N
i=1 \ {α

∗
2l}

}
∪ {α2l}

)
⩽ K2

(
{α∗

il}
N
i=1

)
∀ α2l ∈

[
x
(min)
2 ; x

(max)
2

]
and ∀ l ∈

{
1, M

}
\ {k1, k2, k3} (62)

and inequality

K2

(
α
(0)
1k1
, α2k1 ,

{
α∗
ik1

}N

i=3

)
+K2

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪ {α2k2}

)
+
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+K2

(
α∗
1k3
, α2k3

, α
(0)
3k3
,
{
α∗
ik3

}N

i=4

)
⩽

⩽ K2

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K2

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪
{
α
(0)
2k2

})
+

+K2

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
∀ α2k1

∈
[
x
(min)
2 ; x

(max)
2

]
and ∀ α2k2

∈
[
x
(min)
2 ; x

(max)
2

]
and ∀ α2k3

∈
[
x
(min)
2 ; x

(max)
2

]
(63)

hold along with (23) for n = 2, inequalities

K3

({
{α∗

il}
N
i=1 \ {α

∗
3l}

}
∪ {α3l}

)
⩽ K3

(
{α∗

il}
N
i=1

)
∀ α3l ∈

[
x
(min)
3 ; x

(max)
3

]
and ∀ l ∈

{
1, M

}
\ {k1, k2, k3} (64)

and inequality

K3

(
α
(0)
1k1
,
{{
α∗
ik1

}N

i=2
\
{
α∗
3k1

}}
∪ {α3k1}

)
+

+K3

(
α∗
1k2
, α

(0)
2k2
, α3k2 ,

{
α∗
ik2

}N

i=4

)
+

+K3

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪ {α3k3}

)
⩽

⩽ K3

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K3

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪
{
α
(0)
2k2

})
+

+K3

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
∀ α3k1 ∈

[
x
(min)
3 ; x

(max)
3

]
and ∀ α3k2 ∈

[
x
(min)
3 ; x

(max)
3

]
and ∀ α3k3 ∈

[
x
(min)
3 ; x

(max)
3

]
(65)

hold along with (23) for n = 3, inequalities

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
⩽ Kn

(
{α∗

il}
N
i=1

)
∀ αnl ∈

[
x
(min)
n ; x

(max)
n

]
and ∀ l ∈

{
1, M

}
\ {k1, k2, k3} and ∀n = 4, N (66)

and inequality

Kn

(
α
(0)
1k1
,
{{
α∗
ik1

}N

i=2
\
{
α∗
nk1

}}
∪ {αnk1}

)
+

+Kn

(
α∗
1k2
, α

(0)
2k2
,
{{
α∗
ik2

}N

i=3
\
{
α∗
nk2

}}
∪ {αnk2}

)
+

+Kn

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3
, α∗

nk3

}}
∪
{
α
(0)
3k3
, αnk3

})
⩽

⩽ Kn

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+Kn

({{
α∗
ik2

}N

i=1
\
{
α∗
2k2

}}
∪
{
α
(0)
2k2

})
+

+Kn

({{
α∗
ik3

}N

i=1
\
{
α∗
3k3

}}
∪
{
α
(0)
3k3

})
∀n = 4, N (67)

hold along with (23). Plugging α1k2 = α∗
1k2

and α1k3 = α∗
1k3

in the left side of
inequality (61) gives inequality

K1

(
α1k1

,
{
α∗
ik1

}N

i=2

)
⩽ K1

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
∀ α1k1 ∈

[
x
(min)
1 ; x

(max)
1

]
, (68)
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plugging α2k2 = α
(0)
2k2

and α2k3 = α∗
2k3

in the left side of inequality (63) gives inequality

K2

(
α
(0)
1k1
, α2k1 ,

{
α∗
ik1

}N

i=3

)
⩽ K2

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
∀ α2k1 ∈

[
x
(min)
2 ; x

(max)
2

]
, (69)

plugging α3k2
= α∗

3k2
and α3k3

= α
(0)
3k3

in the left side of inequality (65) gives inequality

K3

(
α
(0)
1k1
,
{{
α∗
ik1

}N

i=2
\
{
α∗
3k1

}}
∪ {α3k1

}
)
⩽ K3

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
∀ α3k1

∈
[
x
(min)
3 ; x

(max)
3

]
, (70)

and plugging αnk2 = α∗
nk2

and αnk3 = α∗
nk3

in the left side of inequality (67) for

n = 4, N gives inequality

Kn

(
α
(0)
1k1
,
{{
α∗
ik1

}N

i=2
\
{
α∗
nk1

}}
∪ {αnk1}

)
⩽ Kn

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
∀ αnk1 ∈

[
x
(min)
n ; x

(max)
n

]
and ∀n = 4, N. (71)

Inequalities (68)— (71) imply that
{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
is a pure-strategy equilibrium,

which is impossible. Therefore, (55) is false. The same conclusion is valid for a three-
person non-cooperative game, where (57), (58), (63), (65) are written by retaining{
α∗
ik3

}N

i=4
= ∅,

{
α∗
ik2

}N

i=4
= ∅, and (59), (66), (67), (71) are omitted. The impossi-

bility of the other pure-strategy equilibrium for the remaining players’ subsets in the
case of three different strategies at three players is proved symmetrically.

Finally, suppose that the other pure-strategy equilibrium differs from (27) in that

the first player uses some α
(0)
1k1

∈
[
x
(min)
1 ; x

(max)
1

]
instead of α∗

1k1
by some k1 ∈{

1, M
}
and some α

(0)
1k2

∈
[
x
(min)
1 ; x

(max)
1

]
instead of α∗

1k2
by some k2 ∈

{
1, M

}
. The

respective {{
{α∗

il}
N
i=1

}
l∈{1, M}\{k1, k2}

∪

∪
{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
∪
{
α
(0)
1k2
,
{
α∗
ik2

}N

i=2

}}
-stack equilibrium (72)

means that ∑
l∈{1, M}\{k1, k2}

K1

(
α1l, {α∗

il}
N
i=2

)
+

+K1

(
α1k1

,
{
α∗
ik1

}N

i=2

)
+K1

(
α1k2

,
{
α∗
ik2

}N

i=2

)
⩽

⩽
∑

l∈{1, M}\{k1, k2}

K1

(
{α∗

il}
N
i=1

)
+
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+K1

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K1

(
α
(0)
1k2
,
{
α∗
ik2

}N

i=2

)
(73)

and ∑
l∈{1, M}\{k1, k2}

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
+

+Kn

(
α
(0)
1k1
,
{{
α∗
ik1

}N

i=2
\
{
α∗
nk1

}}
∪ {αnk1

}
)
+

+Kn

(
α
(0)
1k2
,
{{
α∗
ik2

}N

i=2
\
{
α∗
nk2

}}
∪ {αnk2

}
)
⩽

⩽
∑

l∈{1, M}\{k1, k2}

Kn

(
{α∗

il}
N
i=1

)
+

+Kn

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+Kn

(
α
(0)
1k2
,
{
α∗
ik2

}N

i=2

)
∀n = 2, N, (74)

i. e., inequalities (46) and inequality

K1

(
α1k1 ,

{
α∗
ik1

}N

i=2

)
+K1

(
α1k2 ,

{
α∗
ik2

}N

i=2

)
⩽

⩽ K1

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+K1

(
α
(0)
1k2
,
{
α∗
ik2

}N

i=2

)
∀ α1k1 ∈

[
x
(min)
1 ; x

(max)
1

]
and ∀ α1k2 ∈

[
x
(min)
1 ; x

(max)
1

]
(75)

hold along with (23) for n = 1, inequalities

Kn

({
{α∗

il}
N
i=1 \ {α

∗
nl}

}
∪ {αnl}

)
⩽ Kn

(
{α∗

il}
N
i=1

)
∀ αnl ∈

[
x
(min)
n ; x

(max)
n

]
and ∀ l ∈

{
1, M

}
\ {k1, k2} and ∀n = 2, N (76)

and inequality

Kn

(
α
(0)
1k1
,
{{
α∗
ik1

}N

i=2
\
{
α∗
nk1

}}
∪ {αnk1}

)
+

+Kn

(
α
(0)
1k2
,
{{
α∗
ik2

}N

i=2
\
{
α∗
nk2

}}
∪ {αnk2}

)
⩽

⩽ Kn

(
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

)
+Kn

(
α
(0)
1k2
,
{
α∗
ik2

}N

i=2

)
∀n = 2, N (77)

hold along with (23). Plugging α1k2 = α
(0)
1k2

in the left side of inequality (75) and

plugging αnk2 = α∗
nk2

in the left side of inequality (77) for n = 2, N gives inequalities

(68)— (71), which are impossible due to
{
α
(0)
1k1
,
{
α∗
ik1

}N

i=2

}
is not a pure-strategy

equilibrium. So, the supposition about (72) is contradictory. The same conclusion is
valid for a two-person non-cooperative game, where (70), (71) are omitted, and it is
valid for a three-person non-cooperative game, where (71) is omitted. The impossi-
bility of the other pure-strategy equilibrium for the remaining players in such a case
(of two intervals) is proved symmetrically. The impossibility of other pure-strategy
equilibria differing from (27) in that the players use some other values at intervals is
proved symmetrically as well.
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Therefore, Theorem 3 along with Theorem 2 allows obtaining the single pure-
strategy solution of game (6) directly from equilibria in games (13). The application
of these assertions significantly simplifies the solving of game (6). Under conditions
of the assertions, game (6) is “discretized” or “broken” into simpler N -person games,
whereupon their equilibria are stacked [18, 19].

But what if the conditions are inverted? Does the equilibrium singularity in games
(13) change when the single pure-strategy equilibrium of game (6) is already known?
This question is answered by the following assertion.

Theorem 4. If game (6) on product (7) by conditions (1)— (5) and (8)—(12)
has a single equilibrium situation in pure strategies, then each of M games (13) by
(8)—(12) and (15)—(18) has a single pure-strategy equilibrium, which is the respec-
tive interval part of the game (6) equilibrium.

Proof. Let game (6) have (27) which is single. This implies that inequalities (26)
hold. Plugging

αnl = α∗
nl ∀ l ∈

{
1, M

}
\ {k∗}

in the left side of inequalities (26) gives inequalities

Kn

({{
α∗
ik∗

}N

i=1
\
{
α∗
nk∗

}}
∪ {αnk∗}

)
⩽ Kn

({
α∗
ik∗

}N

i=1

)
∀ αnk∗ ∈

[
x
(min)
n ; x

(max)
n

]
and ∀n = 1, N (78)

whence
{
α∗
ik∗

}N

i=1
is a pure-strategy equilibrium at the k∗-th interval (in the k∗-th

game) for every k∗ ∈
{
1, M

}
.

Suppose that ∃ k0 ∈
{
1, M

}
such that

{
α
(0)
1k0
,
{
α∗
ik0

}N

i=2

}
is an equilibrium by

α
(0)
1k0

̸= α∗
1k0

. Then inequalities

K1

(
α1k0 ,

{
α∗
ik0

}N

i=2

)
⩽ K1

(
α
(0)
1k0
,
{
α∗
ik0

}N

i=2

)
∀ α1k0 ∈

[
x
(min)
1 ; x

(max)
1

]
(79)

and

Kn

({{
α
(0)
1k0
,
{
α∗
ik0

}N

i=2

}
\
{
α∗
nk0

}}
∪ {αnk0

}
)
⩽ Kn

(
α
(0)
1k0
,
{
α∗
ik0

}N

i=2

)
∀ αnk0

∈
[
x
(min)
n ; x

(max)
n

]
and ∀n = 2, N (80)

hold, whence inequalities∑
k∗∈{1, M}\{k0}

K1

({{
α∗
ik∗

}N

i=1
\
{
α∗
1k∗

}}
∪ {α1k∗}

)
+K1

(
α1k0

,
{
α∗
ik0

}N

i=2

)
⩽

⩽
∑

k∗∈{1, M}\{k0}

K1

({
α∗
ik∗

}N

i=1

)
+K1

(
α
(0)
1k0
,
{
α∗
ik0

}N

i=2

)
(81)
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and ∑
k∗∈{1, M}\{k0}

Kn

({{
α∗
ik∗

}N

i=1
\
{
α∗
nk∗

}}
∪ {αnk∗}

)
+

+Kn

({{
α
(0)
1k0
,
{
α∗
ik0

}N

i=2

}
\
{
α∗
nk0

}}
∪ {αnk0

}
)
⩽

⩽
∑

k∗∈{1, M}\{k0}

Kn

({
α∗
ik∗

}N

i=1

)
+Kn

(
α
(0)
1k0
,
{
α∗
ik0

}N

i=2

)
∀n = 2, N (82)

must hold as well. However, inequalities (81) and (82) imply that there is the{{
{α∗

il}
N
i=1

}
l∈{1, M}\{k0}

∪
{
α
(0)
1k0
,
{
α∗
ik0

}N

i=2

}}
-stack equilibrium,

which is impossible. Supposing that
{
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

}
is an equilibrium by

α
(0)
1k0

̸= α∗
1k0

and α
(0)
2k0

̸= α∗
2k0

leads to inequalities

K1

(
α1k0

, α
(0)
2k0
,
{
α∗
ik0

}N

i=3

)
⩽ K1

(
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

)
∀ α1k0

∈
[
x
(min)
1 ; x

(max)
1

]
(83)

and

K2

(
α
(0)
1k0
, α2k0

,
{
α∗
ik0

}N

i=3

)
⩽ K2

(
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

)
∀ α2k0

∈
[
x
(min)
2 ; x

(max)
2

]
(84)

and

Kn

({{
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

}
\
{
α∗
nk0

}}
∪ {αnk0

}
)
⩽

⩽ Kn

(
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

)
∀ αnk0

∈
[
x
(min)
n ; x

(max)
n

]
and ∀n = 3, N. (85)

Inequalities (83)— (85) imply that inequalities∑
k∗∈{1, M}\{k0}

K1

({{
α∗
ik∗

}N

i=1
\
{
α∗
1k∗

}}
∪ {α1k∗}

)
+

+K1

(
α1k0

, α
(0)
2k0
,
{
α∗
ik0

}N

i=3

)
⩽

⩽
∑

k∗∈{1, M}\{k0}

K1

({
α∗
ik∗

}N

i=1

)
+K1

(
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

)
(86)
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and ∑
k∗∈{1, M}\{k0}

K2

({{
α∗
ik∗

}N

i=1
\
{
α∗
2k∗

}}
∪ {α2k∗}

)
+

+K2

(
α
(0)
1k0
, α2k0

,
{
α∗
ik0

}N

i=3

)
⩽

⩽
∑

k∗∈{1, M}\{k0}

K2

({
α∗
ik∗

}N

i=1

)
+K2

(
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

)
(87)

and ∑
k∗∈{1, M}\{k0}

Kn

({{
α∗
ik∗

}N

i=1
\
{
α∗
nk∗

}}
∪ {αnk∗}

)
+

+Kn

({{
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

}
\
{
α∗
nk0

}}
∪ {αnk0

}
)
⩽

⩽
∑

k∗∈{1, M}\{k0}

Kn

({
α∗
ik∗

}N

i=1

)
+Kn

(
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

)
∀n = 3, N (88)

must hold as well. Then inequalities (83)— (85) imply that there is the{{
{α∗

il}
N
i=1

}
l∈{1, M}\{k0}

∪
{
α
(0)
1k0
, α

(0)
2k0
,
{
α∗
ik0

}N

i=3

}}
-stack equilibrium,

which is impossible again. The same conclusion is valid for a two-person non-

cooperative game, where (83), (84), (86), (87) are written by retaining
{
α∗
ik0

}N

i=3
= ∅,{

α∗
ik0

}N

i=3
= ∅, and (85), (88) are omitted. The impossibility of other pure-strategy

equilibrium cases in “short” games (13) is proved symmetrically.

In finite games of three players and more, which are a partial case of non-
cooperative games, the case when every “short” game has just a single pure-strategy
equilibrium seems to be rarer than the case with multiple equilibria. Obviously, the
equilibrium singleness likelihood expectedly decays as the number of players increases.
This, however, does not diminish the importance of Theorem 2 along with Theorem 3
and Theorem 4. These assertions allow to build a simpler proof of a more generalized
assertion.

Theorem 5. If each of M games (13) by (8)—(12) and (15)—(18) has a nonempty
set of equilibrium situations in pure strategies, and game (6) on product (7) by condi-
tions (1)—(5) is equivalent to the succession of these games, then every pure-strategy
equilibrium in game (6) is a stack of any respective M equilibria in games (13). Apart
from the stack, there are no other pure-strategy equilibria in game (6).

Proof. Let the l-th game have Jl equilibria

{{
α∗
iljl

}N

i=1

}Jl

jl=1

by Jl ∈ N, where

α∗
nljl

∈
[
x(min)
n ; x(max)

n

]
∀n = 1, N.
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Then

Kn

({{
α∗
iljl

}N

i=1
\
{
α∗
nljl

}}
∪ {αnl}

)
⩽ Kn

({
α∗
iljl

}N

i=1

)
∀ αnl ∈

[
x
(min)
n ; x

(max)
n

]
and ∀n = 1, N (89)

whence

M∑
l=1

Kn

({{
α∗
iljl

}N

i=1
\
{
α∗
nljl

}}
∪ {αnl}

)
⩽

M∑
l=1

Kn

({
α∗
iljl

}N

i=1

)
∀n = 1, N. (90)

Inequalities (90) directly imply the{{
α∗
iljl

}N

i=1

}M

l=1
-stack equilibrium (91)

for every jl ∈
{
1, Jl

}
by l = 1, M . Apart from stacks (91), there are no other

pure-strategy equilibria in game (6) owing to Theorem 4 along with Theorem 3.

It is quite obvious that Theorems 2—5 are valid for any non-cooperative games
whose players are constrained (forced) to use staircase-function strategies, i. e., they
are valid for finite non-cooperative games (with staircase-function strategies) as well.
It remains only to study a possibility of equilibria in mixed strategies in such finite
games.

5. Representation by a succession of finite games

Along with discrete time intervals, players may be forced to act within a finite subset
of possible values of their pure strategies. That is, these values are

x(min)
n = x(0)n < x(1)n < x(2)n < . . . < x(Qn−1)

n < x(Qn)
n = x(max)

n (92)

for the n-th player, Qn ∈ N ∀n = 1, N . Then the succession of M continuous games
(13) by (8)— (12) and (15)— (18) becomes a succession of M finite games〈{{

x
(mi−1)
i

}Qi+1

mi=1

}N

i=1

, {Hil}Ni=1

〉
(93)

with the n-th player’s payoff matrix

Hnl = [hnlΩ]F (94)

whose format is

F =
N

×
n=1

(Qn + 1) (95)
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and elements are

hnlΩ =

∫
[τ(l−1); τ(l))

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t) for l = 1, M − 1 (96)

and

hnMΩ =

∫
[τ(M−1); τ(M)]

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t) (97)

by indexing
Ω = {ωk}Nk=1 , ωk ∈

{
1, Qk + 1

}
∀ k = 1, N. (98)

It is well-known that a finite non-cooperative game always has an equilibrium either
in pure or mixed strategies. So, if game (6) is made equivalent to a series of finite
games (or, in other words, is represented by a succession of finite games), then it is
easy to see that, unlike the representation with continuous games (13) by (8)— (12)
and (15)— (18), the game always has a solution (at least, in mixed strategies).

Theorem 6. If game (6) on product (7) by conditions (1)— (5) is equivalent to the
succession of M finite games (93) by (94)—(98), then the game is always solved as
a stack of respective equilibria in these finite games. Apart from the stack, there are
no other equilibria in game (6).

Proof. An equilibrium situation in the finite game always exists, either in pure or
mixed strategies. Denote by

Unl =
[
u
(mn)
nl

]
1×(Qn+1)

a mixed strategy of the n-th player in finite game (93). The respective set of mixed
strategies of this player is

Un =

{
Unl ∈ RQn+1 : u

(mn)
nl ⩾ 0,

Qn+1∑
mn=1

u
(mn)
nl = 1

}
, (99)

so Unl ∈ Un, and {Uil}Ni=1 is a situation in game (93), where Jl equilibria exist,

Jl ∈ N. Let
{{

U∗
iljl

}N

i=1

}M

l=1

be equilibria in M games (93) by (94)— (98), where

U∗
nljl

=
[
u
(mn)∗
nljl

]
1×(Qn+1)

∈ Un. (100)

Henceforward, the proof is similar to that in Theorem 5. For equilibria

{{
U∗

iljl

}N

i=1

}M

l=1
by (100), inequalities

∑
mk=1, Qk+1

k=1, N

hnlΩu(mn)
nl

∏
k=1, N
k ̸=n

u
(mk)∗
kljl

 =
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=
∑

mk=1, Qk+1

k=1, N


u(mn)

nl

∏
k=1, N
k ̸=n

u
(mk)∗
kljl

 ∫
[τ(l−1); τ(l))

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t)

 ⩽

⩽
∑

mk=1, Qk+1

k=1, N


 ∏

k=1, N

u
(mk)∗
kljl

 ∫
[τ(l−1); τ(l))

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t)

 =

=
∑

mk=1, Qk+1

k=1, N

hnlΩ ∏
k=1, N

u
(mk)∗
kljl


∀ Unl =

[
u
(mn)
nl

]
1×(Qn+1)

∈ Un for l = 1, M − 1 ∀n = 1, N, (101)

∑
mk=1, Qk+1

k=1, N

hnMΩu
(mn)
nM

∏
k=1, N
k ̸=n

u
(mk)∗
kMjM

 =

=
∑

mk=1, Qk+1

k=1, N


u(mn)

nM

∏
k=1, N
k ̸=n

u
(mk)∗
kMjM

 ∫
[τ(M−1); τ(M)]

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t)

 ⩽

⩽
∑

mk=1, Qk+1

k=1, N


 ∏

k=1, N

u
(mk)∗
kMjM

 ∫
[τ(M−1); τ(M)]

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t)

 =

=
∑

mk=1, Qk+1

k=1, N

hnMΩ

∏
k=1, N

u
(mk)∗
kMjM


∀ UnM =

[
u
(mn)
nM

]
1×(Qn+1)

∈ Un and ∀n = 1, N (102)

hold. So, inequalities

M−1∑
l=1

∑
mk=1, Qk+1

k=1, N

hnlΩu(mn)
nl

∏
k=1, N
k ̸=n

u
(mk)∗
kljl

+
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+
∑

mk=1, Qk+1

k=1, N

hnMΩu
(mn)
nM

∏
k=1, N
k ̸=n

u
(mk)∗
kMjM

 =

=

M−1∑
l=1

 ∑
mk=1, Qk+1

k=1, N


u(mn)

nl

∏
k=1, N
k ̸=n

u
(mk)∗
kljl

 ∫
[τ(l−1); τ(l))

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t)


+

+
∑

mk=1, Qk+1

k=1, N


u(mn)

nM

∏
k=1, N
k ̸=n

u
(mk)∗
kMjM

 ∫
[τ(M−1); τ(M)]

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t)

 ⩽

⩽
M−1∑
l=1

 ∑
mk=1, Qk+1

k=1, N


 ∏

k=1, N

u
(mk)∗
kljl

 ∫
[τ(l−1); τ(l))

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t)


+

+
∑

mk=1, Qk+1

k=1, N


 ∏

k=1, N

u
(mk)∗
kMjM

 ∫
[τ(M−1); τ(M)]

fn

({
x
(mi−1)
i

}N

i=1
, t

)
dµ (t)

 =

=

M−1∑
l=1

∑
mk=1, Qk+1

k=1, N

hnlΩ ∏
k=1, N

u
(mk)∗
kljl

+

+
∑

mk=1, Qk+1

k=1, N

hnMΩ

∏
k=1, N

u
(mk)∗
kMjM

 ∀n = 1, N (103)

hold as well. Therefore, the stack of successive equilibria

{{
U∗

iljl

}N

i=1

}M

l=1

is an

equilibrium in game (6). The sub-assertion of that, apart from such stacks, there
are no other equilibria in game (6) is proved similarly to Theorem 4 along with
Theorem 3.

Clearly, inequalities (89) by l = 1, M are a partial case of inequalities (101), (102).
Inequalities (90) are a partial case of inequalities (103). In a way, Theorem 6 is a
generalization of Theorem 5 for the case of finite game (6), which is correspondingly
defined on a product of staircase-function finite spaces. Nevertheless, stacking up

pure-strategy equilibria and mixed-strategy equilibria of
N

×
n=1

(Qn + 1) finite games

(93) can be cumbersome. The best case is when every “short” game has a single
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pure-strategy equilibrium, although the likelihood of the best case is low.
The likeliest case is when those M finite games have multiple pure-strategy

equilibria and mixed-strategy equilibria. To hit on a series of single-pure-strategy-
equilibrium finite games, plainly speaking, many tries should be done. For instance,
5×5×5×5 games, in which payoffs are generated by a 5×5×5×5 standard-normally-
distributed array multiplied by 10 and rounded to the nearest integers towards −∞,
have roughly 27.5% mixed-strategy equilibria only. The percentage rate of the case
when the game has one pure-strategy equilibrium is at least 36%. Meanwhile, these
rates for 5× 5× 5 games are 28% and 37%, respectively.

6. An example of solving a finite game

To exemplify how the suggested method solves finite games defined on a product
of staircase-function spaces (which are obviously finite), consider a case in which
t ∈ [0; 0.16π], the set of pure strategies of the first player is

X1 = {x1 (t) , t ∈ [0; 0.16π] : 2 ⩽ x1 (t) ⩽ 3} ⊂ L2 [0; 0.16π] , (104)

the set of pure strategies of the second player is

X2 = {x2 (t) , t ∈ [0; 0.16π] : 4 ⩽ x2 (t) ⩽ 4.75} ⊂ L2 [0; 0.16π] , (105)

and the set of pure strategies of the third player is

X3 = {x3 (t) , t ∈ [0; 0.16π] : 1 ⩽ x3 (t) ⩽ 1.5} ⊂ L2 [0; 0.16π] , (106)

and the set of pure strategies of the fourth player is

X4 = {x4 (t) , t ∈ [0; 0.16π] : 3 ⩽ x4 (t) ⩽ 3.4} ⊂ L2 [0; 0.16π] . (107)

The players’ payoff functionals (4) are

K1 (x1 (t) , x2 (t) , x3 (t) , x4 (t)) =

=

∫
[0; 0.16π]

sin (0.2x1x2x3x4t) dµ (t), (108)

K2 (x1 (t) , x2 (t) , x3 (t) , x4 (t)) =

=

∫
[0; 0.16π]

sin
(
0.3x1x2x3x4t−

π

6

)
dµ (t), (109)

K3 (x1 (t) , x2 (t) , x3 (t) , x4 (t)) =

=

∫
[0; 0.16π]

sin
(
0.15x1x2x3x4t−

π

5

)
dµ (t), (110)
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K4 (x1 (t) , x2 (t) , x3 (t) , x4 (t)) =

=

∫
[0; 0.16π]

sin
(
0.54x1x2x3x4t−

π

4

)
dµ (t). (111)

The players are forced to use pure strategies {xi (t)}4i=1 such that

x1 (t) ∈ {2 + 0.5 · (m1 − 1)}3m1=1 ⊂ [2; 3] (112)

and
x2 (t) ∈ {4 + 0.25 · (m2 − 1)}4m2=1 ⊂ [4; 4.75] (113)

and
x3 (t) ∈ {1 + 0.5 · (m3 − 1)}2m3=1 ⊂ [1; 1.5] (114)

and
x4 (t) ∈ {3 + 0.2 · (m4 − 1)}3m4=1 ⊂ [3; 3.4] , (115)

and they can change their values only at time points{
τ (l)

}7

l=1
= {0.02lπ}7l=1 . (116)

Consequently, this game can be thought of as it is defined on parallelepiped lattice

{2 + 0.5 · (m1 − 1)}3m1=1 × {4 + 0.25 · (m2 − 1)}4m2=1 ×

×{1 + 0.5 · (m3 − 1)}2m3=1 × {3 + 0.2 · (m4 − 1)}3m4=1 ⊂
⊂ [2; 3]× [4; 4.75]× [1; 1.5]× [3; 3.4] , (117)

that is this game is a succession of 8 finite 3× 4× 2× 3 (quadmatrix) games〈{{
x
(m1−1)
1

}3

m1=1
,
{
x
(m2−1)
2

}4

m2=1
,
{
x
(m3−1)
3

}2

m3=1
,
{
x
(m4−1)
4

}3

m4=1

}
,

{H1l, H2l, H3l, H4l}
〉

=

=

〈{
{2 + 0.5 · (m1 − 1)}3m1=1 , {4 + 0.25 · (m2 − 1)}4m2=1 , {1 + 0.5 · (m3 − 1)}2m3=1 ,

{3 + 0.2 · (m4 − 1)}3m4=1

}
, {H1l, H2l, H3l, H4l}

〉
(118)

with first player’s payoff matrices{
H1l = [h1lω1ω2ω3ω4 ]3×4×2×3

}8

l=1

whose elements are

h1lm1m2m3m4
=
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=

∫
[0.02·(l−1)π; 0.02lπ)

f1

(
x
(m1−1)
1 , x

(m2−1)
2 , x

(m3−1)
3 , x

(m4−1)
4 , t

)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

f1
(
2 + 0.5 · (m1 − 1) , 4 + 0.25 · (m2 − 1) , 1 +

+0.5 · (m3 − 1) , 3 + 0.2 · (m4 − 1) , t
)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

sin
(
0.2 · (2 + 0.5 · (m1 − 1)) (4 + 0.25 · (m2 − 1)) (1 +

+0.5 · (m3 − 1)) (3 + 0.2 · (m4 − 1)) t
)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

sin (0.0025t · (3 +m1) (15 +m2) (1 +m3) (14 +m4)) dµ (t)

for l = 1, 7 (119)

and

h1,8m1m2m3m4
=

=

∫
[0.14π; 0.16π]

sin (0.0025t · (3 +m1) (15 +m2) (1 +m3) (14 +m4)) dµ (t), (120)

with second player’s payoff matrices{
H2l = [h2lω1ω2ω3ω4

]3×4×2×3

}8

l=1

whose elements are

h2lm1m2m3m4 =

=

∫
[0.02·(l−1)π; 0.02lπ)

f2

(
x
(m1−1)
1 , x

(m2−1)
2 , x

(m3−1)
3 , x

(m4−1)
4 , t

)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

f2
(
2 + 0.5 · (m1 − 1) , 4 + 0.25 · (m2 − 1) , 1 +

+0.5 · (m3 − 1) , 3 + 0.2 · (m4 − 1) , t
)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

sin
(
0.3 · (2 + 0.5 · (m1 − 1)) (4 + 0.25 · (m2 − 1)) (1 +

+0.5 · (m3 − 1)) (3 + 0.2 · (m4 − 1)) t− π
6

)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

sin
(
0.00375t · (3 +m1) (15 +m2) (1 +m3) (14 +m4)−

π

6

)
dµ (t)

for i = 1, 7 (121)
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and

h2,8m1m2m3m4 =

=

∫
[0.14π; 0.16π]

sin
(
0.00375t · (3 +m1) (15 +m2) (1 +m3) (14 +m4)−

π

6

)
dµ (t), (122)

with third player’s payoff matrices{
H3l = [h3lω1ω2ω3ω4 ]3×4×2×3

}8

l=1

whose elements are

h3lm1m2m3m4
=

=

∫
[0.02·(l−1)π; 0.02lπ)

f3

(
x
(m1−1)
1 , x

(m2−1)
2 , x

(m3−1)
3 , x

(m4−1)
4 , t

)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

f3
(
2 + 0.5 · (m1 − 1) , 4 + 0.25 · (m2 − 1) , 1 +

+0.5 · (m3 − 1) , 3 + 0.2 · (m4 − 1) , t
)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

sin
(
0.15 · (2 + 0.5 · (m1 − 1)) (4 + 0.25 · (m2 − 1)) (1 +

+0.5 · (m3 − 1)) (3 + 0.2 · (m4 − 1)) t− π
5

)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

sin
(
0.001875t · (3 +m1) (15 +m2) (1 +m3) (14 +m4)−

π

5

)
dµ (t)

for i = 1, 7 (123)

and

h3,8m1m2m3m4 =

=

∫
[0.14π; 0.16π]

sin
(
0.001875t · (3 +m1) (15 +m2) (1 +m3) (14 +m4)−

π

5

)
dµ (t), (124)

and with fourth player’s payoff matrices{
H4l = [h4lω1ω2ω3ω4

]3×4×2×3

}8

l=1

whose elements are

h4lm1m2m3m4 =

=

∫
[0.02·(l−1)π; 0.02lπ)

f4

(
x
(m1−1)
1 , x

(m2−1)
2 , x

(m3−1)
3 , x

(m4−1)
4 , t

)
dµ (t) =
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=

∫
[0.02·(l−1)π; 0.02lπ)

f4
(
2 + 0.5 · (m1 − 1) , 4 + 0.25 · (m2 − 1) , 1 +

+0.5 · (m3 − 1) , 3 + 0.2 · (m4 − 1) , t
)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

sin
(
0.54 · (2 + 0.5 · (m1 − 1)) (4 + 0.25 · (m2 − 1)) (1 +

+0.5 · (m3 − 1)) (3 + 0.2 · (m4 − 1)) t− π
4

)
dµ (t) =

=

∫
[0.02·(l−1)π; 0.02lπ)

sin
(
0.00675t · (3 +m1) (15 +m2) (1 +m3) (14 +m4)−

π

4

)
dµ (t)

for i = 1, 7 (125)

and

h4,8m1m2m3m4 =

=

∫
[0.14π; 0.16π]

sin
(
0.00675t · (3 +m1) (15 +m2) (1 +m3) (14 +m4)−

π

4

)
dµ (t). (126)

Each of the 3×4×2×3 quadmatrix games (118) with (119)—(126) is solved in pure
strategies. It takes no longer than 1.2 seconds to obtain all the 8 interval solutions
with an Intel Core i7 processor. Besides, each of the games has a single pure-strategy
equilibrium on intervals

{[0.02 · (l − 1)π; 0.02lπ)}7l=1 , [0.14π; 0.16π] .

Consequently, there is a single equilibrium stack x∗n (t) ∈ Xn for the n-th player,

where x∗n (t) takes on values {α∗
nl}

8
l=1 only. It is shown player-wise in Figure 1. The

respective players’ payoffs{
K1 (α

∗
1l, α

∗
2l, α

∗
3l, α

∗
4l) , K2 (α

∗
1l, α

∗
2l, α

∗
3l, α

∗
4l) , K3 (α

∗
1l, α

∗
2l, α

∗
3l, α

∗
4l) ,

K4 (α
∗
1l, α

∗
2l, α

∗
3l, α

∗
4l)

}8

l=1
= {h∗1l, h∗2l, h∗3l, h∗4l}

8
l=1 (127)

are presented in Figure 2 along with the polylines of payoff cumulative sums{
l∑

q=1

h∗1q,

l∑
k=1

h∗2q,

l∑
k=1

h∗3q,

l∑
k=1

h∗4q

}8

l=1

=
{
h
(l)∗
1
∑, h(l)∗2

∑, h(l)∗3
∑, h(l)∗4

∑}8

l=1
. (128)

The final payoffs of the players{
8∑

q=1

h∗1q,

8∑
k=1

h∗2q,

8∑
k=1

h∗3q,

8∑
k=1

h∗4q

}
=

{
h
(8)∗
1
∑ , h

(8)∗
2
∑ , h

(8)∗
3
∑ , h

(8)∗
4
∑}

(129)

are highlighted in Figure 2 with circles. Note that payoff cumulative sums h
(l)∗
2
∑ and

h
(l)∗
4
∑ are not increasing polylines. Contrary to this, cumulative sums h

(l)∗
1
∑ and h

(l)∗
3
∑
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are increasing polylines. Generally speaking, payoff cumulative sums
{

l∑
q=1

h∗iq

}N

i=1


M

l=1

=

{{
h
(l)∗
i
∑}N

i=1

}M

l=1

(130)

do not have to be non-decreasing polylines.

Figure 1: The players’ pure-strategy equilibrium stacks in the game by (104)— (116)
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Figure 2: Interval-wise payoffs (127) and payoff cumulative sums (128) in the game
by (104)— (116)
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7. Discussion

The example clearly shows that solving a succession of multidimensional-matrix
(quadmatrix in the considered example) games is far easier than tackling games whose
players’ pure strategies look like those staircase functions in Figure 1. Indeed, with-
out solving the succession, the respective finite game by (104)—(116) defined on
parallelepiped lattice (117) is rendered to a

6561× 65536× 256× 6561 staircase-function game.

This quadmatrix game has 722204136308736 (more than 722 trillion) situations in
pure strategies, which can hardly be handled in a reasonable computation time. By
the way, the computation time has an exponential growth pattern as the size of the
(hypercubic lattice) matrix increases.

Even if not every multidimensional-matrix game has a single equilibrium, a solu-
tion of the initial staircase-function game is built in the same way as (104)— (126).
The only difference is that then there will be multiple stacked equilibria, which com-
monly induce instability of the players’ behavior [23, 5, 14]. The time spent on com-
putation of a stack depends on both the number of the player’s pure strategies (on
an interval) and the number of intervals. Stacking the “short” games’ pure-strategy
equilibria (by Theorem 5) is fulfilled trivially. When there is at least an equilibrium in
mixed strategies for an interval (that actually falls within conditions of Theorem 6),
the stacking is fulfilled as well implying that the resulting pure-mixed-strategy equi-
librium in game (6) is realized successively, interval by interval, spending the same
amount of time to implement both pure strategy and mixed strategy equilibria [18,
19].

The abovementioned behavior instability is a serious problem in non-cooperative
games having multiple equilibria differing in the player’s payoffs [22, 23, 15]. It is
particularly solved by equilibria refinement with using domination efficiency along
with maximin and the superoptimality rule [14]. The necessary condition is to have
an asymmetry in the payoffs. The asymmetry allows distinguish more profitable (and
thus stable) equilibria, whereupon the best equilibrium (equilibria) or equilibrium
stacks are selected. Otherwise, they are not distinguishable.

Continuous games are ever struggled to be approximated or rendered to finite
games so that their solutions could be easily implemented and practiced [10, 9, 11,
12, 15]. However, even a finite (that is, multidimensional-matrix) game may be not
tractable due to gigantic number of situations in game. The presented method further
“breaks” the initial staircase-function game with a purpose to obtain an equilibrium
in a more reasonable time. So, the method is far more tractable than a straight-
forward approach to solving directly the staircase-function multidimensional-matrix
game would be.

Here, the tractability does not depend on the number of (time) intervals. Un-
less the sets of possible values of players’ pure strategies are of order of hundreds or
thousands (when searching for equilibria in a “short” multidimensional-matrix game
may take a few seconds and more), the method is entirely applicable. Moreover,
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the presented method is a significant contribution to the mathematical game theory
and practice for avoiding too complicated solution approaches resulting from game
continuities and functional spaces of pure strategies. This is similar to preventing
Einstellung effect in modeling [16, 7]. The “breaking” of the staircase-function finite
game into a succession of “short” multidimensional-matrix games herein “deeinstel-
lungizes” such non-cooperative games.

A drawback is that a “short” multidimensional-matrix game may be intractable
itself if its size is too big or there is a large number of players. The size limitation
depends on requirements from the administrator, which, say, can limit the number of
players to 3 or 4. If the interval breaking is over-thick, the “long” staircase-function
multidimensional-matrix game may be solved in an unreasonable amount of time
(although every “short” game is tractable and solved relatively fast). Consequently,
the size of the “short” multidimensional-matrix game should be made as small as
possible. The number of players should be necessarily limited.

8. Conclusion

A non-cooperative game defined on a product of staircase-function finite spaces is
equivalent to a multidimensional-matrix game. In this game, a (pure) strategy
is a complex set of simple actions ordinarily represented as a function of time.
Players’ payoff matrices in this game are built very slowly, so it is impracticable
to find any equilibria (as well as the other solution types) in such games using
straightforwardly methods to solve a finite non-cooperative game. However, the
multidimensional-matrix staircase-function game is equivalent to the succession of
“short” multidimensional-matrix games, each defined on an interval where the pure
strategy value is constant.

Owing to Theorem 6 along with Theorem 4 and Theorem 5 the equilibrium of
the initial staircase-function game can be obtained by stacking the equilibria of the
“short” multidimensional-matrix games. The stack is always possible, even when
only time is discrete (and the set of pure strategy possible values is continuous).
Any combination of the respective equilibria of the “short” multidimensional-matrix
games is an equilibrium of the initial staircase-function game. Moreover, Theorem 5
allows finding a pure-strategy equilibrium of the initial (infinite or continuous) game
by stacking the pure-strategy equilibria of the “short” (infinite or continuous) games.
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