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Abstract: In this paper, we derive the Pontryagin’s maximum prin-
ciple for optimal control problems governed by nonlinear impulsive differ-
ential equations. Our method is based on Dubovitskii-Milyutin theory, but
in doing so, we assumed that the linear variational impulsive differential
equation around the optimal solution is exactly controllable, which can be
satisfied in many cases. Then, we consider an example as an application of
the main result. After that, we study the case when the differential equa-
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future research where the differential equation, the constraints, the time
scale, the impulses, etc. are changed.
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1. Introduction

Pontriaguin’s maximum (minimum) principle is used to optimize a functional depend-
ing on the state of the system and the best possible control that takes a dynamical
system from one state to another, especially in the presence of constraints on state
or input controls. It was formulated in 1956 by the Russian mathematician Lev
Pontriaguin and his students(see [41]). It has as a special case the Euler-Lagrange
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equation of the calculus of variations. The result was first successfully applied to
minimal time problems when input control is constrained, but it can also be useful in
studying state constrained problems. In the following decades several abstract theo-
ries have been published to give a synthesis that would include different chapters of
optimization, such as mathematical programming, classical variational calculus, and
optimal control. The two most prominent theories are: Dubovitskii–Milyutin [16] and
Iofee-Tihomirov [22]. In [22], the main result is a first order necessary condition for
problems called “soft convex”. The condition is formulated in terms of Lagrange’s
multipliers. In the Dubovitskii–Milyutin theory (which is applied in the present work)
the fundamental idea is the following: Conic approximations are constructed to the
data of an optimization problem with constrains, and in terms of duals elements of
these cones, the optimality condition is expressed in the abstract Euler–Lagrange
equation form. Given a class of optimization problems, the application of this theory
consists in specifying the cones and their dual to express the Abstract Euler-Lagrange
equation in terms of the problem in question. In the book of I. V. Girsanov [18] this
method is carried out for several cases, such as the optimal control problem with a
finite number of constraints on the state of the system. The main goal of this paper is
to derive a general optimal condition (Pontryagin’s maximum principle ) for optimal
control problems governed by impulsive differential equations. More specifically, we
shall study the following problem

Problem 1.1. ∫ T

0

Φ(x(t), u(t), t)dt −→ min loc. (1.1)

(x, u) ∈ E := PW([0, T ];Rn)× Lr
∞([0, T ];Rr), (1.2)

ẋ(t) = φ(x(t), u(t), t), x(0) = x0 (1.3)

x(T ) = x1; x1, x0 ∈ IRn, (1.4)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (1.5)

u(t) ∈M, t ∈ [0, T ], a.e., (1.6)

where 0 < t1 < t2 < · · · < tp < T , are fixed real numbers, x ∈ PW([0, T ];Rn), the
control function u belongs to Lr

∞, M ⊂ IRr and the functions

φ : IRn × IRr × [0, T ] −→ IR,

Φ : IRn × IRr × [0, T ] −→ IRn,

Jk : IRn −→ IRn,
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where PW([0, T ];Rn) and Lr
∞ are define by

PW([0, T ];Rn) = {z : [0, T ] → Rn : z ∈ C(J ′;Rn),∃z(t+k ), z(t
−
k )

and z(tk) = z(t−k ), k = 1, 2, . . . , p},

where J = [0, T ] and J ′ = J\{t1, t2, . . . , tp}, endowed with the norm

∥z∥0 = sup
t∈[0,T ]

∥z(t)∥Rn ,

and Lr
∞ = Lr

∞([0, T ];Rr) is the space of measurable function essentially bounded with
the essential supremum norm.

For now these functions are smooth enough, so to prove the main results we will
impose some additional conditions on the terms involved in the problem 1.1. The
study of the controllability of differential equations with impulses is in effervescence
at the moment, we can mention the following recent works on the controllability
of such equations (see [8, 10, 28, 29, 30, 31, 32, 33, 36]), this in finite dimension,
whereas in infinite dimension we can cite the following works ([2, 3, 5, 20, 38]). The
Dubovitskii-Milyutin theory has been used to study optimal control problems for a
long time, but not for impulsive differential equations, in this sense it is worthwhile
to mention the work done in [9, 14, 15, 19, 21, 16, 24, 34]. Furthermore, we know
there are a lot of works on optimal control problems using different techniques, for
which one can see the research done in [23, 35, 37, 40] But, as far as we know, the
optimal control problems for impulsive differential equations have not been studied
much, only some particular works can be found in the literature, to mention some of
them, we have the works carried out by ([1, 4, 6, 11, 26, 39, 42]).
Outline of the work: Section 2 contains preliminary results, here we summarizes
the fundamental concepts and results of Dubovitskii-Milyutin theory that will be
applied later; the intersection of cones lemma is presented. Then, the optimality
condition in the abstract Euler–Lagrange equation form for a general optimization
problem with constraints is formulated. To apply the general scheme of this theory
to a specific class of problems, we must first compute the approximation cones. To do
this, in subsections 2.3-2.5, we summarize and develop the methods to calculate the
decay, admissible and tangent cones that appear in [18]. In addition, several exten-
sions of these results are demonstrated, which facilitate the treatment for impulsive
differential equations. In subsection 2.6, we present and prove some modifications of
Minkowski-Farkas’s Theorem, which simplify the explicit calculation of dual cones.
Results of this subsection are useful to express the corresponding Euler-Lagrange
equation to many problems in future investigations. In section 3, an optimal con-
trol problem governed by a nonlinear impulsive differential equation is considered.
The main objective is to see that under certain conditions the impulses do not affect
the optimality condition obtained by Pontryagin; roughly speaking, if the pulses are
small enough, the maximum principle remains the same. In section 4, we prove that
the necessary condition of optimality presented in Theorem 3.1 (maximum principle),
under certain additional conditions, is also sufficient. To do this, we must assume
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conditions that allow us to apply the general theorem of sufficient condition of opti-
mality from the Dubovitskii-Milyutin theory, Theorem 2.17.
In section 5 we modify the optimal control problem by changing the boundary con-
dition in its final state by placing a finite number of nonlinear constraints, and under
certain conditions we again prove that the maximum principle persists.
In section 6 an example is presented as an application of these results obtained here.
In this section 7, we will show how Dubovitskii–Milyutin theory can be applied to
generalize the Maximum principle of [18] to the case of optimal control problems gov-
erned by impulsive nonlinear neutral differential equations.
Finally, in section 8, we present several problems that could be solved in a similar
way, which are part of future research.

2. Preliminaries Results

In this section, we summarize some fundamental results of the Dubovitskii- Milyutin
theory. We formulate the general optimization problem with constraints and construct
the approximation cones to the problem data (the objective function and restrictions),
and the optimality condition in terms of the approximation cones dual is expressed
by the Euler-Lagrange equation. The proof of these results can be refereed in [18].

2.1. Cones, Dual Cones and Dubovitskii–Milyutin Lemma

Let E be a locally convex topological linear space, and denote its dual space by E∗,
the space of continuous linear functionals.

Definition 2.1. K ⊂ E is a cone with apex at zero , if

λK = K, (λ > 0).

Definition 2.2.

K+ = {f ∈ E∗ / f(x) ≥ 0, ∀x ∈ K},

is called the dual cone of K.

Proposition 2.3.

a) K+ is a w∗− closed and convex cone.

b) K+ = (K)+, (K is the w− closure of K).

c)
(⋃

α∈AKα

)+
=
⋂

α∈AK
+
α where A is an index–set.

d) If K1 ⊂ K2, then K
+
2 ⊂ K+

1 .
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Definition 2.4. Let A be an arbitrary set and Kα ⊂ E, α ∈ A, be cones with apex
at zero. Then, we define the following set∑

α∈A

K+
α = {fα1 + fα2 + · · ·+ fαn , fαi ∈ K+

αi
, n ∈ N, αi ∈ A (i = 1, . . . , n)}.

Lemma 2.5. Let Kα ⊂ E (α ∈ A) be convex cones w−closed, then(⋂
α∈A

Kα

)+

=
∑
α∈A

K+
α (w∗ − closure ).

Lemma 2.6. Let K ⊂ E be a convex cone with apex at zero, L ⊂ E a linear subspace

such that
◦
K ∩L ̸= ∅. Then (K ∩ L)+ = K+ + L+.

Lemma 2.7. Let K1, K2, . . . ,Kn ⊂ E be open convex cones such that

n⋂
i=1

Ki ̸= ∅.

Then (
n⋂

i=1

Ki

)+

=

n∑
i=1

K+
i .

Lemma 2.8. (Dubovitskii–Milyutin). Let K1, K2, . . . ,Kn+1 ⊂ E be convex cones
with apex at zero, with K1, K2, . . . ,Kn open. Then

n+1⋂
i=1

Ki = ∅

if and only if there are fi ∈ K+
i (i = 1, 2, . . . , n+ 1), not all zero such that

f1 + f2 + · · ·+ fn + fn+1 = 0.

2.2. The Abstract Euler–Lagrange Equation

Let us consider F : E −→ IR, and

Qi ⊂ E (i = 1, 2, . . . , n+1) such that the interior
◦
Qi ̸= ∅ (i = 1, 2, . . . , n). Consider

the following problem

F (x) −→ min loc (2.1)

x ∈ Qi (i = 1, 2, . . . , n+ 1). (2.2)
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Remark 2.9. The sets Qi, (i = 1, 2, . . . , n) usually are given by constraints inequality

type, and Qn+1 by constraints equality type, and in general the interior
◦

Qn+1= ∅.
To study the above problem, we give some previous definitions and lemmas.

Definition 2.10. The vector h ∈ E is a vector of decay direction of F : E −→ IR
at the point x◦ ∈ E, if there exists a neighborhood U of the point x◦, numbers
α = α(F, x◦, h) < 0 and ε0 ∈ IR+, such that for all ε ∈ (0, ε0) and all h ∈ U the
following inequality holds

F (x◦ + εh) ≤ F (x◦) + ε α.

Lemma 2.11. The decay vectors of F in x◦ generate an open cone with apex at zero
which will be denoted by Kd = Kd(F, x

◦), and it will be called as decay cone.

Next, we introduce similar definitions for different constraints of the problem. For
a constraint of inequality–type, we give the following definition.

Definition 2.12. The vector h ∈ E is an admissible vector to Q ⊂ E in the point
x◦ ∈ Q, if there is a neighborhood U of the point x◦ and ε0 ∈ IR+, such that for all
ε ∈ (0, ε0) and all h ∈ U, we have that

x◦ + ε h ∈ Q.

Lemma 2.13. The admissible vectors to Q in x◦ generate an open cone with apex at
zero, which will be denoted by Ka := Ka(Q, x

◦), and will be called admissible cone to
Q in x◦.

To constraints of equality–type, we introduce the following definition.

Definition 2.14. The vector h ∈ E is called a tangent vector to Q ⊂ E at the point
x◦, if there are ε0 ∈ IR+ and a function θ : [0, ε] −→ E, such that

lim
ε→0+

θ(ε)

ε
= 0,

and
x◦ + ε h+ θ(ε) ∈ Q (ε ∈ (0, ε0)).

The set of all tangent vectors to Q in x◦ is a cone with apex at zero, which will
be denoted by KT := KT (Q, x

◦); and will be called tangent cone.

Theorem 2.15. (Dubovitskii–Milyutin). Let us consider the following problem F (x) −→ min loc

x ∈ Qi, (i = 1, 2, . . . , n+ 1).
(2.3)

Let x◦ ∈ E be a solution of problem (2.3), and suppose that:

a) K0 is the decay cone of F in x◦.
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b) Ki are the admissible cones to Qi in x
◦ ∈ Qi (i = 1, 2, . . . , n).

c) Kn+1 is the tangent cone to Qn+1 in x◦.

Then, if Ki (i = 0, 1, 2, . . . , n+ 1) are convex, there exist functions fi ∈ K+
i ,

(i = 0, 1, . . . , n+ 1) not all zero such that

f0 + f1 + · · ·+ fn+1 = 0 (2.4)

Equation (2.4) is called the Abstract Euler-Lagrange equation.

Remark 2.16. Sometimes it is important to ensure that f0 ̸= 0; an examination of
the proof of Theorem 2.15 shows that a sufficient condition for this is that

n+1⋂
i=1

Ki = ∅.

To apply the Dubovitskii–Milyutin theorem to specific problems, we must follow
the following scheme:

i) Determine the decay vectors.

ii) Determine the admissible vectors.

iii) Determine the tangent vectors.

iv) Build the dual cones.

Next, we will face problems (i) - (iv). The necessary optimality condition stated
in Theorem 2.15, under certain conditions, is also sufficient:

Theorem 2.17. Suppose that the following conditions hold:

α) F is continuous and convex,

β) Qi is convex (i = 1, 2, . . . , n+ 1),

γ)

(
n⋂

i=1

◦
Qi

)
∩Qn+1 ̸= ∅,

δ) x◦ ∈
n+1⋂
i=1

Qi,

ε) Ki (i = 0, 1, . . . , n+ 1) are defined as in Theorem 2.15.

Then, x◦ is a solution of the problem (2.3) if and only if there exist fi ∈ K+
i (i =

0, 1, 2, . . . , n+ 1) not all zero such that

f0 + f1 + f2 + · · ·+ fn+1 = 0.
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2.3. Cones of Decay Vectors

In this subsection we explicitly compute the cones of decay vectors for several func-
tions.

Definition 2.18. Let E be a linear space and F : E −→ IR a function. Then, we
shall say that F has directional derivative in x◦ ∈ E on the direction of h ∈ E if the
following limit there exists:

lim
ε→0+

F (x◦ + ε h)− F (x◦)

ε
=: F ′(x◦, h). (2.5)

For x◦ ∈ E.

Theorem 2.19. If h ∈ Kd and there exists F ′(x◦, h), then F ′(x◦, h) < 0.

Theorem 2.20. If E is a Banach space, F is locally Lipschitzian in x◦, and
F ′(x◦, h) < 0, then h ∈ Kd(F, x

◦).

Theorem 2.21. (See [18, pg 45]). Let F : E −→ IR be a continuous and convex
function in a topological linear space E and x◦ ∈ E, then F has directional derivative
in all directions at x◦ and also we have that

a) F ′(x◦, h) = inf

{
F (x◦ + ε h)− F (x◦)

ε
/ε ∈ IR+

}
,

b) Kd(F, x
◦) = {h ∈ E/F ′(x◦, h) < 0}.

Theorem 2.22. (See [18, pg 48]). If E is a Banach space and F is Fréchet–
differentiable in x◦ ∈ E, then

Kd(F, x
◦) = {h ∈ E/F ′(x◦)h < 0}

where F ′(x◦) is the Fréchet’s derivative of F in x◦.

Example 2.23. In the same way as the example 7.3 of (See [18, pg 50]) we obtain
the following result:

Let E = PW([0, T ];Rn)× Lr
∞[0, T ] and F : E −→ IR defined as follows

F (x, u) :=

∫ T

0

Φ(x(t), u(t), t)dt,

Φ : IRn × IRr × IR −→ IR is a continuous function in its first two variables and
measurable in the third variable, and has a derivative in its first and second variables
Φx and Φu respectively bounded. Then, we have that

F ′(x◦, u◦)(x, u) =

∫ T

0

[Φx(x
◦, u◦, t)x(t) + Φu(x

◦, u◦, t)u(t)]dt,

and Kd(F, (x
◦, u◦)) = {(x, u) ∈ E/F ′(x◦, u◦)(x, u) < 0}.



Maximum principle for impulsive differential equations 23

2.4. Cones of Admissible Vectors

Let E be a topological linear space, F : E −→ IR a continuous function, x◦ ∈ E and

Q = {x ∈ E/F (x) ≤ F (x◦)}.

Lemma 2.24. Let Ka = Ka(Q, x
◦) and Kd = Kd(F, x

◦), then Kd ⊂ Ka.

The proof of above Lemma is trivial. There are cases in which Kd = Ka.

Theorem 2.25. (See [18, pg 58]) Suppose that

i) There exists F ′(x◦, h) (h ∈ E).

ii) There exists h ∈ E such that F ′(x◦, h) < 0.

iii) F ′(x◦, ·) is convex.

Then

Ka ⊂ {h ∈ E /F ′(x◦, h) < 0} = Kd.

Theorem 2.26. (See [18, pg 59]). If Q is an arbitrary convex set with
◦
Q̸= ∅, then

Ka = {h ∈ E/h = λ(x◦ − x), x ∈
◦
Q, λ ∈ IR+}.

2.5. Cones of Tangent Vectors

In this section we basically mention the so-called Lusternik Theorem, which is a
powerful tool for calculating the cone of tangent vectors.

Theorem 2.27. (Lusternik). Let E1, E2 Banach spaces, and suppose that

a) x◦ ∈ E1, P : E1 −→ E2 is Fréchet’s differentiable in x◦ and P (x◦) = 0.

b) P ′(x◦) : E1 −→ E2 is surjective.

Then the cone of tangent vectors KT to the set Q := {x ∈ E1/P (x) = 0} in the point
x◦ ∈ Q, is given by

KT = Ker P ′(x◦).

The proof of above theorem (which is not trivial) can be found in [22, pg 30].

2.6. Relationship Between Approximation Cones and Their
Dual

In this subsection, we present results that establishes a closed relationship between
approximation cones and their dual.
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Theorem 2.28. If K is a linear subspace of a topological linear space E, then

K+ = {f ∈ E∗ / f(x) = 0, ∀x ∈ K} =: K⊥,

where K⊥ is called the annihilator of K.

Theorem 2.29. Let f ∈ E∗ and K1 := {x ∈ E / f(x) = 0},
K2 := {x ∈ E / f(x) ≥ 0},K3 := {x ∈ E / f(x) > 0}. Then:

i) If f ̸= 0, then K+
1 = {λ f / λ ∈ IR}, K+

2 = K+
3 = {λ f / λ ∈ IR+0}.

ii) If f = 0, then K+
1 = {0}, K+

2 = {0} and K+
3 = E∗.

The proof of Theorems 2.28 and 2.29 is trivial.

Theorem 2.30. Let E be a topological linear space and F : E −→ IR continuous and
convex. For x◦ ∈ E, let us consider the following set

Q := {x ∈ E /F (x) ≤ F (x◦)}.

Now, we define
Q∗ := {f ∈ E∗ / f(x) ≥ f(x◦), (x ∈ Q)}.

Then

i) K+
T (Q, x◦) = Q∗,

ii) If there exists x ∈ E such that F (x) < F (x◦), then

K+
d = K+

a = K+
T = Q∗.

Proof. Let f ∈ Q∗ and h ∈ KT ; then, by definition of KT , there are ϵ0 ∈ IR+, and
θ : [0, ε0] → E such that

lim
ε→0+

θ(ε)

ε
= 0,

and
x◦ + ε h+ θ(ε) ∈ Q, (ε ∈ (0, ε0)).

Therefore
f(x◦ + ε h+ θ(ε)) ≥ f(x◦), (ε ∈ (0, ε0)).

Then f(h) ≥ 0. Hence f ∈ K+
T , that is to say

Q∗ ⊂ K+
T .

Let f ∈ K+
T and x ∈ Q, then by the convexity of Q, we have that x− x◦ is a tangent

vector to Q in the point x◦, then it follows

f(x− x◦) ≥ 0,
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or equivalently f ∈ Q∗.

Therefore
K+

T = Q∗.

Suppose (ii) hods, i.e., there exists x ∈ E such that F (x) < F (x◦), this implies that
there exists h ∈ E such that F ′(x◦, h) < 0. In fact

Let h = x− x◦. Then, since F is continuous and convex, it follows

F ′(x◦, h) ≤ F (x◦ + h)− F (x◦)

= F (x)− F (x◦) < 0.

Now, let us see that Ka ⊂ Kd; by Theorem 2.21, we have that

Kd = {h ∈ E /F ′(x◦, h) < 0}.

Let h ∈ Ka, then there is ε0 ∈ IR+ such that x0+ ε h ∈ Q for all ε ∈ (0, ε0), therefore
F (x◦ + ε h) ≤ F (x◦), (ε ∈ (0, ε0)), which implies that F ′(x◦, h) ≤ 0. Since Ka is
open, there is a neighbourhood U of h such that U ⊂ Ka. Then, for γ ∈ IR+ small
enough, we have that

hγ := h+ γ(h− h) ∈ U.

Then

F ′(x◦, hγ) ≤ 0 and h =
1

1 + γ
hγ +

γ

1 + γ
h.

Due to the fact that F ′(x◦, ·) is convex, we obtain that

F ′(x◦, h) ≤ 1

1 + γ
F ′(x◦, hγ) +

γ

1 + γ
F ′(x◦, h) < 0.

By Theorem 2.25, we have that Ka ⊂ Kd.

Let us prove that K+
a = K+

T . In fact, condition (ii) implies that
◦
Q̸= ∅. Thus, by

Theorem 2.26, it follows that

Ka = {h ∈ E /h = λ(x− x◦), x ∈
◦
Q, λ ∈ IR+}.

Let f ∈ K+
a and x ∈

◦
Q, then x− x◦ ∈ Ka, thus, we have that

f(x) ≥ f(x◦) (x ∈
◦
Q),

Given that F is continuous and convex,
◦
Q = Q = Q, we have that

f(x) ≥ f(x◦) (x ∈ Q).
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Therefore f ∈ Q∗, that is

K+
a ⊂ Q∗ = K+

T ,

but Ka ⊂ KT . Then

K+
a = K+

T = Q∗.

From the above proof, we have the following consequence

Corollary 2.31. If F is convex and continuous, and there is x ∈ E such that
F (x) < F (x◦), then

F ′(x◦, h) < 0 if and only if, there exists λ ∈ IR+, x ∈ E such that F (x) < F (x◦) and
h = λ(x− x◦).

Theorem 2.32. Let E1, E2 be topological linear spaces and A : E1 −→ E2 a linear
operator. Let E = E1 × E2 be the product space and consider

K := GA = {x ∈ E /x = (x1, x2), Ax1 = x2}.

Then

K+ = {f ∈ E∗, f = (f1, f2) / f1 = −A∗f2}.

The proof of above Theorem is trivial.

2.6.1. Minkowski-Farkas’s Theorem and its Aplications

Theorem 2.33. (Minkowski-Farkas see [18, pg 70]). Let E1 and E2 be topological
linear spaces, and K2 ⊂ E2 a convex cone with apex at zero, and consider A : E1 −→
E2 a continuous linear operator. If we define

K1 := {x1 ∈ E1 /Ax1 ∈ K2},

and suppose that there exists x1 ∈ E1 such that Ax1 ∈
◦
K2, then

K+
1 = A∗K+

2 .

Remark 2.34. Below we will give different versions of Minkowski-Farkas’s Theorem.
Before, we shall prove a known Lemma since part of its proof given here will be
applied in the proof of Theorem 2.36.

Lemma 2.35. Let E be a locally convex topological linear space, and A, B linear
subspaces such that A is finite-dimensional, and B is closed. Then A + B is also
closed.
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Proof. Assume, without loss of generality, that A∩B = {0}. Let {e1, e2, . . . , en} be
a basis of A, then, since the space E is locally convex and ei ̸∈ B, i = 1, 2, . . . , n, by
Separation Theorem there are gi ∈ E∗ (i = 1, 2, . . . , n) such that

gi(ei) > 0 (i = 1, 2, . . . , n)

gi(x) = 0 (i = 1, 2, . . . , n; x ∈ B).

We consider the following functionals

fi =
gi

gi(ei)
(i = 1, 2, . . . , n).

Let’s introduce the following operator

P : E −→ IRn ∼= A,

P = (f1, f2, . . . , fn).

Then we have that

P (x) = x (x ∈ A)

P (x) = 0 (x ∈ B).

Let as + bs ∈ A+B (s ∈ S) be a generalized sequence such that (as + bs) converges
to z ∈ E. The fact that P is continuous implies that P (as + bs) converges to P (z),
which implies that (as) → P (z), and given that A is closed P (z) ∈ A, and by the
same reason (bs) → z − P (z) ∈ B, that is

z = P (z) + z − P (z), P (z) ∈ A, z − P (z) ∈ B.

Theorem 2.36. Let E1, E2 topological linear spaces and A : E1 −→ E2 a continuous
linear operator. Let K2 ⊂ E2 be a convex cone with apex at zero such that K+

2 is
finitely generated, and define

K1 := {x1 ∈ E1 /Ax1 ∈ K2}.

Then

(K ∩ L)+ = K+ + L+ and K+
1 = A∗K+

2 .

Proof. Let E := E1 × E2, K := E1 × K2 and L = GA. By the hypotheses
K+ = {0}×K+

2 is closed and finite-dimensional, and since L+ is a subspace, which is
w∗− closed, then we claim that K+ + L+ is w∗−closed. In fact, since E∗

1 , E
∗
2 are lo-

cally convex topological linear spaces with respect to the w∗-topology, it follows that
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E∗
1 ×E∗

2 is a linear locally convex topological linear space with the product-topology,
then we can apply Lemma 2.35 by taking A the subspace generated by K+, B = L+

and P : E∗ −→ A in the same way as in lemma 2.35.

Let as + bs ∈ K+ + L+ = A+B (s ∈ I) be a generalized convergent sequence to
z ∈ E∗, then

as → P (z) and bs → z − P (z).

Since K+, L+ are closed, we have that P (z) ∈ K+ and z − P (z) ∈ L+.

Now, by applying Lemma 2.5, we obtain that

(K ∩ L)+ = K+ + L+.

On the other hand, we have

K+ = {(f1, f2) ∈ E∗ / f1 = 0, f2 ∈ K+
2 },

L+ = {(g1, g2) ∈ E∗ / g1 = −A∗g2},

by Theorem 2.32. Let f1 ∈ K+
1 and put f := (f1, 0). Then, f ∈ (K ∩ L)+. In fact,

let x ∈ (K ∩ L). Hence x = (x1, Ax1) and Ax1 ∈ K2, this implies that x1 ∈ K1 by
definition of K1, thus f(x) = f1(x1) ≥ 0 for all x ∈ (K ∩ L), that is f ∈ (K ∩ L)+.
Then, there exist

(0, h) ∈ K+, h ∈ K+
2 , (g1, g2) ∈ L+, g1 = −A∗g2,

such that
(f1, 0) = (0, h) + (g1, g2),

which implies that f1 = g1 and h+ g2 = 0, and therefore f1 = A∗h, h ∈ K+
2 . Thus

K+
1 ⊂ A∗K+

2 .

This claim A∗K+
2 ⊂ K+

1 is trivial.

Theorem 2.37. Let E1, E2 be topological linear spaces and A : E1 −→ E2 a contin-
uous linear operator, and let K2 ⊂ E2 be a convex cone with apex at point zero. Let
us define the following cone

K1 := {x1 ∈ E1 /Ax1 ∈ K2}.
Suppose that there are g ∈ E∗

1 and h ∈ K+
2 such that

A∗h ̸= 0, K1 = {x1 ∈ E1 / g(x1) ≥ 0}.

Then

K+
1 = A∗K+

2 .



Maximum principle for impulsive differential equations 29

Proof. The proof that A∗K+
2 ⊂ K+

1 is trivial. Let us see that K+
1 ⊂ A∗K+

2 . In fact,
since A∗K+

2 ⊂ K+
1 , by Theorem 2.28 there is β ∈ IR+ such that A∗h = β g. Now, let

f1 ∈ K+
1 , then there exists λ1 ∈ IR+, such that f1 = λ1 g. Therefore

f1 = A∗
(
λ1
β
h

)
,

λ1
β
h ∈ K+

2 ,

which implies that K+
1 ⊂ A∗K+

2 .

Proposition 2.38. Let E1, E2 be Banach spaces and A : E1 −→ E2 a continuous
linear operator such that Im A = E2, and a convex cone K2 ⊂ E2 with apex at zero.
Now, we define K1 as follows

K1 := {x1 ∈ E1 /Ax1 ∈ K2}.

Then

K+
1 ⊂ Im A∗.

Proof. From the fact that K+
2 = K

+

2 , we can assume without loss of generality
that 0 ∈ K2; which implies that Ker A ⊂ K1, then by item d) from Proposition 2.3,
we have that K+

1 ⊂ (KerA)+. But (Ker A)+ = (Ker A)⊥, then from the factorization
lemma from [22, pg 16], we get that (Ker A)⊥ = Im A∗.

Proposition 2.39. Let E1, E2 be topological linear spaces and Ai : E1 −→ E2 (i =
1, 2, . . . , h) continuous linear operators, and consider K2 ⊂ E2 a convex cone with
apex at zero. Let us define the following cones

K1 := {x1 ∈ E1 /Aix1 ∈ K2 i = 1, 2, . . . , n}.

Suppose that there exists x1 ∈ E1 such that Aix1 ∈
◦
K2 (i = 1, 2, . . . , n). Then

K+
1 =

(
n∑

i=1

Ai

)∗

K+
2 .

Proof. Let us define the following cones

K1i := {x1 ∈ E1 /Aix1 ∈ K2}; i = 1, 2, . . . , n.

Then by the continuity of Ai (i = 1, 2, . . . , n), we have that x1 ∈
◦
K1i, (i =

1, 2, . . . , n), which implies that

(
n⋂

i=1

◦
K1i

)
=: K3 ̸= ∅. So, by Lemma 2.7 it follows

that

K+
3 =

n∑
i=1

(
◦
K1i)

+.
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We have that K3 ⊂ K1, which implies

K+
1 ⊂ K+

3 =

n∑
i=1

(
◦
K1i)

+ =

n∑
i=1

K+
1i

Therefore K+
1 ⊂

n∑
i=1

K+
1i and

n∑
i=1

K+
1i ⊂ K+

1 , which implies that

K+
1 =

n∑
i=1

K+
1i.

But, from Theorem 2.33, we have that K+
1i = A∗

iK
+
2 (i = 1, 2, . . . , n), then

K+
1 =

n∑
i=1

A∗
i K

+
2 .

To conclude this section, below we will see some applications of the Minkowski-
Farkas’s Theorem and its versions.

Proposition 2.40. Let us consider E = PW([0, T ], IRn) and the following cone

K = {x ∈ E : x(T ) = 0}.

Then f ∈ K+ if, an only if, there is a ∈ IRn such that

f(x) = ⟨a, x(T )⟩ (x ∈ E).

Proof. The sufficiency is trivial. Let us prove the necessity. Define the operator
L : E −→ IRn, L(x) := x(T ), (x ∈ E), and consider f ∈ K+. Then, Im L = IRn and
Ker L ⊂ Ker f, hence by The Factorization Lemma from (see [22, pg 15]), there is a
linear-continuous function g : IRn −→ IR such that

f = g ◦ L.

But it is well known that g has the following form

g(x) = ⟨a, x⟩, (x ∈ IRn),

for some fixed a ∈ IRn. Therefore

f(x) = ⟨a, x(T )⟩, (x ∈ E).
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Example 2.41. Let A : [0, T ] −→ IRn×n and B : [0, T ] −→ IRn×r be measurable
and bounded functions; and consider the following linear control system

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ [0, T ], a.e, (2.6)

x(T ) = 0 (2.7)

where (x, u) ∈ E1 := PW([0, T ];Rn)× Lr
∞ [0, T ]. Let us define the following cone

K1 := {(x, u) ∈ E1 / (2.6)− (2.7) hold} .

Proposition 2.42. If (2.6) is controllable, then dim K+
1 = n, and also for all f ∈ K+

1

there is a ∈ IRn such that

f(x, u) =

〈
a,

∫ T

0

[A(t)x(t) +B(t)u(t)]dt

〉
, ((x, u) ∈ E1).

Proof. Let E2 := PW([0, T ];Rn) and K2 := {x ∈ E2 / x(T ) = 0}, and define the
following operator Λ : E1 −→ E2 as follows

Λ(x, u)(t) :=

∫ t

0

[A(τ)x(τ) +B(τ)u(τ)]dτ ((x, u) ∈ E1, t ∈ [0, T ]).

Then
K1 = {(x, u) ∈ E1 /Λ(x, u) ∈ K2}.

Λ is a continuous linear operator and dim K+
2 = n. In fact, the assertion for Λ is

trivial. Let us see that dim K+
2 = n; for which it is enough to see the following:

f2 ∈ K+
2 if, an only if, there is a ∈ IRn such that

f2(x) = ⟨a, x(T )⟩ (x ∈ E2).

This follows from Proposition 2.40.
Now. let {e1, e2, . . . , en} be the canonic basis of IRn, and define the following linear
functionals f i : E2 → IR, i = 1, 2, . . . , n

f i(x) = ⟨ei, x(T )⟩ , (x ∈ E2).

Then, given f2 ∈ K+
2 there exists a ∈ IRn such that f2(x) = ⟨a, x(T )⟩. On the other

hand, we now that a =
∑n

i= aiei. Then,

f2 =

n∑
i=1

aif i (ai ∈ IR, i = 1, 2, . . . , n).

Let us see that {f1, f2, . . . , fn} is a linearly independent family, for which we consider
αi ∈ IR (i = 1, 2, . . . , n) such that

α1f1 + α2f2 + · · ·+ αnfn = 0.
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Next, since (2.6) is controllable, then for each ei, i = 1, 2, . . . , n, there is (xi, ui) ∈
E1 (i = 1, . . . , n) such that

x(T ) = αiei (i = 1, 2, . . . , n).

Thus

α1f1(xi) + · · ·+ αnfn(xi) =

n∑
i=

α2
i = 0,

which proves that {f1, f2, . . . , fn} is linearly independent; therefore dim K+
2 = n.

Then, by Theorem 2.36 (Minkowski-Farkas´s theorem version), we have that

K+
1 = Λ∗K+

2 .

That is to say, for all f1 ∈ K+
1 , there is a ∈ IRn such that

f1(x, u) = ⟨a, Λ(x, u)(T )⟩

=

〈
a

∫ T

0

[A(t)x(t) +B(t)u(t)]dt

〉
((x, u) ∈ E1).

Proposition 2.43. Let A,Jk : [0, T ] −→ IRn×n, k = 1, 2, 3, . . . , p and B : [0, T ] −→
IRn×r be measurable and bounded matrix functions. Suppose the following impulsive
linear system is controllable on [0, T ] for any b = (b1, b2, . . . , bp) ∈ IRnp = (IRn)p{

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ (0, τ ], t ̸= tk
x(tk) = Jk(tk)x(t

−
k ) + bk, k = 1, 2, 3, . . . , p.,

(2.8)

where (x, u) ∈ E1 := PW([0, T ];Rn)× Lr
∞ [0, T ]. Let us define the following cone

K2 :=
{
(x, u) ∈ E1 / x(T ) = 0, x(t+k )− Jk(tk)x(t

−
k ) = 0, k = 1, 2, 3, . . . , p

}
.

Then dimK+
2 = n(p+ 1), and also for all f ∈ K+

2 there is a ∈ IRn(p+1) such that

f(x, u) =
〈
a, (x(T ), x(t1)− Jk(t1)x(t

−
1 ), . . . , x(tp)− Jk(tp)x(t

−
p ))
〉
, (x, u) ∈ E1.

Proof. Consider the following linear and continuous operator Λ : E1 → IRn(1+p)

defined as follows

Λ(x, u) =
(
x(T ), x(t1)− Jk(t1)x(t

−
1 ), . . . , x(tp)− Jk(tp)x(t

−
p )
)
.

Since system (2.8) is controllable, then Im Λ = IRn(1+p). Now, let f ∈ K+
2 , then

kerΛ ⊂ ker f , and by the factorization lemma from (see [22, pg 15]), there is a linear-

continuous function g : IRn(1+p) −→ IR such that

f = g ◦ Λ.
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But, it is well known that g has the following form

g(x) = ⟨a, x⟩, (x ∈ IRn(1+p)),

for some fixed a ∈ IRn(1+p). Therefore

f(x, u) = ⟨a, (x(T ), x(t1)− Jk(t1)x(t
−
1 ), . . . , x(tp)− Jk(tp)x(t

−
p ))⟩, ((x, u) ∈ E1).

Now. let {e1, e2, . . . , en(p+1)} be the canonic basis of IRn(p+1), where ei =
(ei,1, ei,2, . . . , ei,(p+1)), with ei,k ∈ IRn, and define the following linear functionals

f i : E1 → IR, i = 1, 2, . . . , n(p+ 1),

f i(x) =
〈
ei, (x(T ), x(t1)− J1(t1)x(t

−
1 ), . . . , x(tp)− Jp(tp)x(t

−
p ))
〉
, ((x, u) ∈ E1).

Then, given f2 ∈ K+
2 there exists a ∈ IRn(p+1) such that

f2(x, u) =
〈
a, (x(T ), x(t1)− J1(t1)x(t

−
1 ), . . . , x(tp)− Jp(tp)x(t

−
p ))
〉
.

On the other hand, we know that a =
∑p+1

i=1 aiei. Then,

f2 =

p+1∑
i=1

aif i (ai ∈ IR, i = 1, 2, . . . , n(p+ 1)).

Let us see that {f1, f2, . . . , f (p+1)} is a linearly independent family, for which we
consider αi ∈ IR (i = 1, 2, . . . , p+ 1) such that

α1f1 + α2f2 + · · ·+ αn(p+1)f (p+1) = 0.

Since, for any b = (b1, b2, . . . , bp) ∈ IRnp the impulsive system (2.8) is controllable,
then for each ei, i = 1, 2, . . . , n(p+1), with ei = (ei1, ei2, · · · , eip), there is (xi, ui) ∈
E1 (i = 1, . . . , p+ 1) such that

x(T ) = αiei1, and x(tk)− Jk(tk)x(t
−
k ) = αieik (k = 2, 3, . . . , p+ 1).

Thus

α1f1(x1, u1) + · · ·+ αnf (p+1(x(p+1, u(p+1) =

p+1∑
i=

α2
i = 0,

which proves that {f1, f2, . . . , f (p+1)} is linearly independent; therefore dim K+
2 =

n(p+ 1).

Now, we will give an important example related with support functionals.
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Example 2.44. Let M ⊂ IRr and Q := {u ∈ Lr
∞[0, T ] / u(t) ∈ M, t ∈ [0, T ], a.e.}

and consider u◦ ∈ Q, a ∈ Lr
1[0, T ] and f : Lr

∞ −→ IR defined as follows

f(u) :=

∫ T

0

⟨a(t), u(t)⟩dt, (u ∈ Lr
∞).

Let us suppose that f(u) ≥ f(u◦) (u ∈ Q), then for all U ∈ M and almost all
t ∈ [0, T ]

⟨a(t), U − u◦(t)⟩ ≥ 0.

For details of this example see [18, pg 76].

Finally, we have the well known formula for integrating by part in the Lebesgue
Integral

Proposition 2.45. (Integration by parts for Lebesgues integral)
Let f, g : [α, β] → IR be two differentiable function almost every well, such that
f ′g, fg′ ∈ L1([α, β], IR). The the following formula holds∫

[α,β]

f ′gdµ = lim
t→β

f(t)g(t)− lim
t→α

f(t)g(t)−
∫
[α,β]

fg′dµ.

3. Optimal Control Problem for Impulsive Differen-
tial Equations

In this section we will show how Dubovitskii–Milyutin theory can be applied to gen-
eralize the maximum principle of [18]. The generalization consists in admitting an
finite number of impulses in the differential equation presented in the problem. We
will also see that in a linear dynamics case, under certain additional conditions, the
maximum principle is a sufficient condition for optimality. After that, we shall give
an example that illustrates the applicability of the main result of this section.

3.1. Maximum Principle in the Space PW([0, T ];Rn)× Lr
∞

Let n, r ∈ N and T ∈ IR+, and consider the functions Φ, φ,Jk :

φ : IRn × IRr × [0, T ] −→ IR,

Φ : IRn × IRr × [0, T ] −→ IRn,

Jk : IRn −→ IRn,

where PW([0, T ];Rn) and Lr
∞ are define by

PW([0, T ];Rn) = {z : [0, T ] → Rn : z ∈ C(J ′;Rn),∃z(t+k ), z(t
−
k )

and z(tk) = z(t−k ), k = 1, 2, 3 . . . , p},



Maximum principle for impulsive differential equations 35

where J = [0, T ] and J ′ = J\{t1, t2, . . . , tp}, endowed with the norm

∥z∥0 = sup
t∈[0,T ]

∥z(t)∥Rn ,

and Lr
∞ = Lr

∞([0, T ];Rr) be the space of measurable function essentially bounded
with essential norm.

Let us suppose that the following conditions are fulfilled

a) Φ, φ and Jk are continuous functions, with derivatives Φx, Φu, φx, φu,
J ′
k are bounded functions on compact sets of IRn × IRr × [0, T ].

b) M ⊂ IRr is convex and closed with
◦
M ̸= ∅.

c) The following linear system is controllable

ẋ(t) = φx(x
◦(t), u◦(t), t)x(t) + φu(x

◦(t), u◦(t), t)u(t), t ∈ (0, τ ], a.e. (3.1)

d) The corresponding impulsive linear variational equations around the point
(x◦, u◦) ∈ E is controllable on [0, T ] for any b = (b1, b2, . . . , bp) ∈ (IRn)p

{
ẋ(t) = φx(x

◦(t), u◦(t), t)x(t) + φu(x
◦(t), u◦(t), t)u(t), t ∈ (0, T ], t ̸= tk

x(t+k ) = J ′
k(x

0(t−k ))x(t
−
k ) + bk, k = 1, 2, 3, . . . , p.,

(3.2)

Remark 3.1. According to the results presented in the references [10, 28, 29, 30,
31, 32, 33]) on the controllability of control systems governed by impulsive differential
equations, a sufficient condition for system (3.2) to be controllable is that system (3.1)
is controllable and the following condition holds for the impulses.

∥J ′
k(x

0(t−k ))∥ <
1

p
, k = 1, 2, 3, . . . , p. (3.3)

Theorem 3.1. Suppose that conditions a) - d) are fulfilled. Let (x◦, u◦) ∈ E be a
solution of Problem 1.1:
Then, there exists λ0 ∈ IR+0 and a function ψ ∈ PW([0, T ];Rn) such that λ0 and ψ
both are different from zero, and ψ is solution of the following differential equation{

ψ̇(τ) = −φ∗
x(x

◦(τ), u◦(τ), τ)ψ(τ) + λ0Φx(x
◦(τ), u◦(τ), τ),

ψ(T ) = a.
(3.4)

Moreover, for all U ∈M and almost all t ∈ [0, T ] the following inequality hols

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), U − u◦(t)⟩ ≥ 0 (3.5)
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Proof. Let F : E −→ IR be a function defined as follows

F (x, u) =

∫ T

0

Φ(x(t), u(t), t)dt,

and let Q := Q1 ∩ Q2 where Q2, Q1 are given by points (x, u) ∈ E, which satisfy
(1.3)-(1.5) and (1.6) respectively.
Then, Problem 1.1 is equivalent to F (x, u) −→ min

(x, u) ∈ Q.

a) Analysis of the function F .

Let K0 := Kd(F, (x
◦, u◦)) be the decay cone of F in the point (x◦, u◦). Then,

by Theorem 2.22, we have that

K0 = {(x, u) ∈ E /F (x◦, u◦)(x, u) < 0}.

Suppose for a moment that K0 ̸= ∅, then by Theorem 2.29 we obtain

K+
0 = {−λ0 F (x◦, u◦) / λ0 ∈ IR+0}.

By example 2.23, we obtain that

F
′
(x◦, u◦)(x, u) =

∫ T

0

[Φx(x
◦, u◦, t)x(t)+Φu(x

◦, u◦, t)u(t)]dt, ((x, u) ∈ E).

Therefore, for all f0 ∈ K+
0 , there exists λ0 ∈ IR+0 such that

f0(x, u) = −λ0
∫ T

0

[Φx(x
◦, u◦, t)x(t) + Φu(x

◦, u◦, t)u(t)]dt, ((x, u) ∈ E).

b) Analysis of constraint Q1.

Let us consider the set

Q′
1 := {u ∈ Lr

∞[0, T ] / u(t) ∈M, t ∈ [0, T ], a.e.}.

Then Q1 = PW([0, T ];Rn)×Q′
1. Moreover, by the hypothesis M is convex and

closed, with
◦
M= ∅. So, the following statements hold

i) Q1, Q
′
1 are convex and closed.

ii)
◦
Q1 ̸= ∅,

◦
Q′

1 ̸= ∅.
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If we call K1 the admissible cone to Q1 in (x◦, u◦) ∈ Q1, then

K1 = PW([0, T ];Rn)×K ′
1,

where K ′
1 is the admissible cone Q′

1 in u◦ ∈ Q′
1.

Therefore, for all f1 ∈ K+
1 there is f ′1 ∈ K ′+

1 such that f1 = (0, f ′1).

By Theorem 2.26, it follows that f ′1 is a support of Q′
1 at u◦.

c) Analysis of the constraint Q2.

Let us find the tangent cone to Q2 at the point (x◦, u◦)

K2 := KT (Q2, (x
◦, u◦)).

Consider the space E1 = PW([0, T ];Rn) × IRn(1+p) = E2 and the operator:
P : E1 → E2 defined by

P (x, u)(t) =

(
x(t)− x0 −

∫ t

0

φ(x(l), u(l), l)dl, S(x, u), x(T )− x1

)
,

where

S(x, u) =
(
x(t1)− J1(x(t

−
1 )), x(t2)− J2(x(t

−
2 )) · · · , x(tp)− Jp(x(t

−
p ))
)
.

Then

P ′(x0, u0)(x, u) =(
x(t)−

∫ t

0

(φx(x
◦(l), u◦(l), l)x(l) + φu(x

◦(l), u◦(l), l)u(l))dl, S′(x, u), x(T )

)
,

with

S′(x, u) =
(
x(t1)− J ′

1(x
0(t−1 ))x(t

−
1 ), · · · · · · , x(tp)− J ′

p(x
0(t−p ))x(t

−
p )
)
.

We want to find conditions under which the operator P ′(x0, u0) is onto in order
to apply Lustenik theorem 2.27. So, for (a(·), b1, b2, . . . , bp, x1) ∈ E2, we want
to solve the equation

P ′(x0, u0)(x, u) = (a(·), b1, b2, . . . , bp, x1).

Now, suppose that u = 0. Then, from ( [25], pg 89), we know that the following
Volterra integral equation

z(t) = a(t) +

∫ t

0

(φx(x
◦(l), u◦(l), l)z(l)dl,
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has a solution z ∈ PW([0, T ];Rn).
Next, since the impulsive linear variational equation (3.2) is controllable, for a
point (b1, b2, . . . , bp) ∈ IRnp with

bk = bk − z(tk) + J ′
k(x

0(t−k ))z(t
−
k ), k = 1, 2, 3, . . . , p,

there exists a control u ∈ Lr
∞ such that the corresponding solution y(t) of (3.2)

satisfies y(T ) = x1 − z(T ) and

y(tk) = J ′
k(x

0(t−k ))y(t
−
k ) + bk, k = 1, 2, 3, . . . , p.

Let us make the following change of variable x = y + z. then

P ′(x0, u0)(x, u)(t) = ((y + z)(t)−∫ t

0

(φx(x
◦, u◦, l)(y + z)(l) + φu(x

◦, u◦, l)u(l))dl, S′(x, u), (y + z)(T )

)
= (y(t) + a(t)−∫ t

0

(φx(x
◦, u◦, l)y(l) + φu(x

◦, u◦, l)u(l))dl, S′(x, u), (y + z)(T )

)
= (a(t), S′(x, u), x1) .

Now, we shall see that S′(x, u) = (b1, b2, . . . , bp). In fact,

S′(x, u) =(
x(t1)− J ′

1(x
0(t−1 ))x(t

−
1 ), · · · · · · , x(tp)− J ′

p(x
0(t−p ))x(t

−
p )
)
=(

(y + z)(t1)− J ′
1(x

0(t−1 ))(y + z)(t−1 ), · · · , (y + z)(tp)− J ′
p(x

0(t−p ))(y + z)(t−p )
)

=
(
b1 + z(t1)− J ′

1(x
0(t−1 ))z(t

−
1 ), · · · · · · , bp + z(tp)− J ′

p(x
0(t−p ))z(t

−
p )
)

= (b1, b2, . . . , bp) .

Therefore, the operator P ′(x0, u0) is onto. Then, applying Lusternik’s Theorem
2.27, we get that tangent cone K2 is given by

K2 = {(x, u) ∈ E1 /P
′(x◦, u◦)(x, u) = 0}.

i.e., K2 is the set of points (x, u) ∈ E1 such that

ẋ(t) = φx(x
◦(t), u◦(t), t)x(t) + φu(x

◦(t), u◦(t), t)u(t), t ̸= tk (3.6)

x(t+k ) = J ′
k(x

0(t−k ))x(t
−
k ), k = 1, 2, 3, . . . , p. (3.7)

x(T ) = 0 (3.8)

Consider the following linear subspaces

L1 = {(x, u) ∈ E1/(3.6)− (3.7) hold}, L2 = {(x, u) ∈ E1/ x(T ) = 0}.

Then, K2 = L1 ∩ L2. Now, let us compute K+
2 . By Proposition 2.40, we have

that f22 ∈ L+
2 if, and only if, there exists a ∈ IRn such that

f22(x, u) = ⟨a, x(T )⟩ ((x, u) ∈ E).
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Moreover, the controllability of systems (3.1) - (3.2) implies that L1 + L2 is
closed, then it follows that L+

1 + L+
2 is w∗− closed; hence by Lemma 2.5 we

obtain that
K+

2 = L+
1 + L+

2 .

Since L1 is a linear subspace, it follows from Theorem 2.28 that, for any

f21 ∈ L+
1 , f21(x, u) = 0 for all (x, u) satisfying (3.6)-(3.7).

e) Euler-Lagrange equation.

It is easy to see that K0, K1, K2, are convex cones. Hence, by
Theorem 2.15 there are functionals fi ∈ K+

i (i = 0, 1, 2, ) not all zero such
that

f0 + f1 + f2 = f0 + f1 + f21 + f22 = 0. (3.9)

Equation (3.9) can be written in the following form

−λ0
∫ T

0

[Φx(x
◦, u◦, t)x(t) + Φu(x

◦, u◦, t)u(t)]dt+

f ′1(x, u) + f21(x, u) + ⟨a, x(T )⟩ = 0, ((x, u) ∈ E).

Now, for all u ∈ Lr
∞ there exists x, solution of system (3.6)-(3.7) with x(0) = 0.

Then (x, u) ∈ L1. Therefore f21(x, u) = 0.
Let ψ be the solution of equation (3.4), that is{

ψ̇(t) = −φ∗
x(x

◦(τ), u◦(τ), τ)ψ(τ) + λ0Φx(x
◦(τ), u◦(τ), τ)

ψ(T ) = a.

Multiplying both sides of this equation by x and integrating from 0 to T , we
get

λ0

∫ T

0

Φx(x
◦, u◦, t)x(t)dt− ⟨a, x(T )⟩ =∫ T

0

⟨ψ̇(t), x(t)⟩dt+
∫ T

0

⟨φ∗
x(x

◦, u◦, t)ψ(t), x(t)⟩dt

−⟨a, x(T )⟩ = ⟨ψ(t), x(t)⟩]T0 −
∫ T

0

⟨ψ(t), ẋ(t)⟩dt

+

∫ T

0

⟨φ∗
x(x

◦, u◦, t)ψ(t), x(t)⟩dt− ⟨a, x(T )⟩ = ⟨ψ(T ), x(T )⟩ − ⟨ψ(0), x(0)⟩

−⟨a, x(T )⟩+
∫ T

0

⟨ψ(t), φx(x
◦, u◦, t)x(t)− ẋ(t)⟩dt =

−
∫ T

0

⟨ψ(t), φu(x
◦, u◦, t)u(t)⟩dt = −

∫ T

0

⟨φ∗
u(x

◦, u◦, t)ψ(t), u(t)⟩dt.
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Then, from Euler-Lagrange equation (3.9), we obtain for (u ∈ Lr
∞[0, T ]), that

f ′1(t) =

∫ T

0

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t)u(t)⟩dt. (3.10)

Since f ′1 is a support of Q′
1 at the point u◦ ∈ Q′

1, from example 2.44, it follows
that

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), U − u◦(t)⟩ ≥ 0,

for all U ∈M and almost all t ∈ [0, T ].
Now, we will see that the case λ0 = 0, ψ = 0, is not possible. In fact

If ψ = 0, then ψ(T ) = a = 0. Thus

f22(x, u) = ⟨a, x(T )⟩ = 0 ((x, u) ∈ E),

that is f22 ≡ 0. So, from the fact that λ0 = 0, we get that f0 = 0. Also, from
(3.10), we have that f ′1(u) = 0 (u ∈ Lr

∞[0, T ]); then from Euler– Lagrange
equation it follows that f21 = 0, where

f2 = f21 + f22 = 0,

which contradicts Theorem 2.15.
So far, we have two additional assumptions:
Firstly, we assumed that K0 ̸= ∅, and secondly, we assumed that system

ẋ = φx(x
◦, u◦, t)x(t) + φu(x

◦, u◦, , t)u(t)

is controllable.
Now, we will prove, that these assumptions are superfluous. In fact, if K0 = ∅,
then by definition of K0, we have that∫ T

0

[Φx(x
◦(t), u◦(t), t)x(t) + Φu(x

◦(t), u◦(t), t)u(t)]dt = 0 ((x, u) ∈ E).

Let us put λ0 = 1, ψ(T ) = a = 0, then, from last computation, we have that

∫ T

0

⟨Φ∗
x(x

◦, u◦, t)ψ(t), x(t)⟩dt = −
∫ T

0

⟨φ∗
u(x

◦, u◦, t)ψ(t), u(t)⟩dt,

for all (x, u) such that x is solution of equation the (3.6)-(3.7). Then∫ T

0

⟨φ∗
u(x

◦(t), u◦(t), t)ψ(t) + Φu(x
◦(t), u◦(t), t)u(t)⟩dt = 0 (u ∈ Lr

∞[0, T ])

which implies that
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⟨−φ∗
u(x

◦, u◦, t)ψ(t) + Φu(x
◦, u◦, t), U − u◦(t)⟩ = 0,

for all U ∈M and almost all t ∈ [0, T ].
Now, suppose that system (3.1) is not controllable, then there is a non-trivial
function ψ ∈ C([0, T ], IRn) that is solution of

ψ̇(t) = φ∗
x(x

◦(t), u◦(t), t)ψ(t),

such that, for all t ∈ [0, T ] it follows that

φ∗
u(x

◦(t), u◦(t), t)ψ(t) = 0.

By taking λ0 = 0, we get that ψ is solution of (3.4), and therefore

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t), U − u◦(t)⟩ ≥ 0,

for all U ∈M and almost all t ∈ [0, T ].

Thus, the proof of Theorem 3.1 is completed.

4. Sufficient Condition of Optimality

The necessary condition of optimality proved in Theorem 3.1 (Maximum Principle),
under certain additional conditions, is also sufficient. In fact, let us consider the par-
ticular case of Problem 1.1 in which the differential equation is linear.

Problem 4.1. ∫ T

0

Φ(x(t), u(t), t)dt −→ min

(x, u) ∈ E = PW([0, T ];Rn)× Lr
∞([0, T ];Rr),

(4.1)

ẋ(t) = A(t)x(t) +B(t)u(t), (4.2)

x(0) = x0, x(T ) = x1; x1, x0 ∈ IRn, (4.3)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (4.4)

u(t) ∈M, t ∈ [0, T ], a.e. (4.5)

where A(·) : [0, T ] −→ IRn×n, B(·) : [0, T ] −→ IRn×r are measurable and bounded
matrix functions and Jk − n× n matrix, k = 1, 2, 3, . . . , p . Let (x◦, u◦) ∈ E be a
point satisfying conditions (4.2)– (4.5).
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Theorem 4.1. Let us suppose that the conditions a) - d) from Theorem 3.1 are sat-
isfied.

Besides, let us assume the following hypotheses:

I) The system (4.2) and the impulsive system (4.2)-(4.4) are controllable.

II) There exists ũ ∈ Lr
∞ [0, T ] such that ũ(t) ∈

◦
M, for almost all t ∈ [0, T ].

III) Φ is a convex function in its two first variables.

Then (x◦, u◦) is global solution of Problem 4.1.

Proof. Let us define the function F : E −→ IR as follows

F (x, u) =

∫ T

0

Φ(x(t), u(t), t)dt,

and the set Q := Q1 ∩Q2, where Q2 is given by (4.2)-(4.4) and Q1 by (4.5).
Then, Problem 4.1 is equivalent to: F (x, u) −→ min

(x, u) ∈ Q.

It is clear that Qi (i = 1, 2) are convex sets, and from the condition III) we have

that F is convex, and from condition II) we have that (x̃, ũ) ∈
◦
Q1 ∩Q2.

Thus, by Theorem 2.17 it follows:

(x◦, u◦) is a minimum point of F in Q if, and only if, there are fi ∈ K+
i (i = 0, 1, 2),

not all zero such that
f0 + f1 + f2 = 0.

Here, Ki (i = 0, 1, 2) are cones defined as in Theorem 3.1. Now, suppose that the
Maximum Principle of Theorem 3.1 holds. That is to say, there exist λ0 ∈ IR+0 and a
function ψ ∈ PW([0, T ];Rn) such that λ0 and ψ are not both zero, and ψ is a solution
of the following differential equation{

ψ̇(t) = −A∗(t)ψ(t) + λ0Φx(x
◦(t), u◦(t), t)

ψ(T ) = a
(4.6)

Moreover, for all U ∈M and almost all t ∈ [0, T ], we have that

⟨−B∗(t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), U − u◦(t)⟩ ≥ 0. (4.7)

Then, to prove the theorem, it is enough to see that there are fi ∈ K+
i (i = 0, 1, 2)

not all zero, such that f0 + f1 + f2 = 0. To do so, we define the following functionals:
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f ′1 : Lr
∞ −→ IR, f1 : E −→ IR

f ′1(u) :=

∫ T

0

⟨−B∗(t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), u(t)⟩dt,

f1 = (0, f ′1).

Let

Q′
1 = {u ∈ Lr

∞ / u(t) ∈M, t ∈ [0, T ], a.e.}.

Then, from (4.7), we obtain

f ′1(u) ≥ f ′1(u
◦) (u ∈ Q′

1).

Therefore f ′1 is a support of Q′
1 at u◦. Hence f1 = (0, f ′1) ∈ K+

1 . Let us define the
functional f21 : E −→ IR as follows

f21(x, u) := λ0

∫ T

0

[Φx(x
◦(t), u◦(t), t)x(t) + Φu(x

◦(t), u◦(t), t)u(t)]dt

−f ′1(u)− ⟨a, x(T )⟩.

Now, we will see that f21 ∈ L+
1 , where

L1 = {(x, u) / (4.2), (4.4) hold} ,

as in the Theorem 3.1. In fact, suppose that (x, u) ∈ L1, then multiplying both sides
of the equation (4.6) by ẋ and integrating by parts from 0 to T , we obtain that

λ0

∫ T

0

⟨Φx(x
◦(t), u◦(t), t)ψ(t), x(t)⟩dt

−⟨a, x(T )⟩ = −
∫ T

0

⟨B∗(t)ψ(t), u(t)⟩dt.

Then

f21(x, u) = −f ′1(u)−
∫ T

0

⟨B∗(t)ψ(t), u(t)⟩dt+ λ0

∫ T

0

Φu(x
◦(t), u◦(t), t)u(t)dt.

Therefore

f21(x, u) = −f ′1(u) + f ′1(u) = 0,

Thus f21 ∈ L+
1 .

Next, we shall define the following functionals

f0, f1, f2; E −→ IR,
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by

f0(x, u) := λ0

∫ T

0

[Φx(x
◦(t), u◦(t), t)x(t) + Φu(x

◦(t), u◦(t), t)u(t)]dt

f2(x, u) := f21(x, u) + ⟨a, x(T )⟩ = f21(x, u) + f22(x, u).

Then f0 ∈ K+
0 , f1 ∈ K+

1 , f2 ∈ K+
2 , and also

f0 + f1 + f2 = 0,

not all these functionals are zero, because by hypothesis λ0 and ψ are not both zero.
From the convexity conditions, it follows the global-minimality of (x◦, u◦).

5. Modification of Boundary Conditions

We now discuss problem 1.1 with modified boundary condition. We replace the end
condition of (1.4) by a more general condition, in other word, we consider the following
optimal control problem

Problem 5.1. ∫ T

0

Φ(x(t), u(t), t)dt −→ min loc. (5.1)

(x, u) ∈ E := PW([0, T ];Rn)× Lr
∞([0, T ];Rr), (5.2)

ẋ(t) = φ(x(t), u(t), t), x(0) = x0 (5.3)

x0 ∈ IRn; Gi(x(T )) = 0, i = 1, 2, . . . , q. (5.4)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (5.5)

u(t) ∈M, t ∈ [0, T ], a.e., (5.6)

where Gi(x) are differentiable scalar functions on IRn. So arguing exactly as in the
previous problem 1.1, under certain conditions that we will present immediately, the
cone of tangent vectors K2 is the set of points (x, u) ∈ E such that

ẋ(t) = φx(x
◦(t), u◦(t), t)x(t) + φu(x

◦(t), u◦(t), t)u(t), t ̸= tk (5.7)

x(t+k ) = J ′
k(x

0(t−k ))x(t
−
k ), k = 1, 2, 3, . . . , p. (5.8)

⟨G′
i(x

0(T )), x(T )⟩ = 0, i = 1, 2, 3, . . . , q. (5.9)
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But, in order to compute the tangent cone K2 we have to assume the following
condition on G′

i(x
◦(T )). Consider the jacobian matrix of

G(x) = (G1(x), G2(x), G3(x), · · · , Gq(x)) (5.10)

around the point x◦(T )

Ξ = G′(x◦(T )) =


G′

11(x
◦(T )) G′

12(x
◦(T )) · · · G′

1n(x
◦(T ))

G′
21(x

◦(T )) G′
22(x

◦(T )) · · · G′
2n(x

◦(T ))
...

...
...

...
G′

q1(x
◦(T )) G′

q2(x
◦(T )) · · · G′

qn(x
◦(T ))

 . (5.11)

Additional Hypothesis

H) Rank(Ξ) = q.

Remark 5.1. Condition H) is equivalent to say that the operator Ξ : IRn → IRq is
onto (Range(Ξ) = IRq), which is equivalent that (ΞΞ∗)−1 exists. Therefore Ξ+ =
Ξ∗(ΞΞ∗)−1 is a right inverse of Ξ. So, the equation Ξx(T ) = â admits the solution
x(T ) = Ξ∗(ΞΞ∗)−1â.

In order to compute the tangent cone, we have to modify the operator P defined
in problem 1.1, Let us find the tangent cone to Q2 at the point (x◦, u◦)

K2 := KT (Q2, (x
◦, u◦)).

Consider the space E1 = PW([0, T ];Rn) × IRn(1+p) × IRq = E2 and the operator:
P : E1 → E2 defined by

P (x, u)(t) =

(
x(t)− x0 −

∫ t

0

φ(x(l), u(l), l)dl, S(x, u), G(x(T ))

)
,

where

S(x, u) =
(
x(t1)− J1(x(t

−
1 )), x(t2)− J2(x(t

−
2 )) · · · , x(tp)− Jp(x(t

−
p ))
)
,

and G is given by (5.10). Then

P ′(x0, u0)(x, u) =(
x(t)−

∫ t

0

(φx(x
◦(l), u◦(l), l)x(l) + φu(x

◦(l), u◦(l), l)u(l))dl, S′(x, u), Ξx(T )

)
where

S′(x, u) =
(
x(t1)− J ′

1(x
0(t−1 ))x(t

−
1 ), · · · · · · , x(tp)− J ′

p(x
0(t−p ))x(t

−
p )
)
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and Ξ is given by (5.11). We want to find conditions under which the op-
erator P ′(x0, u0) is onto in order to apply Lustenik Theorem 2.27. So, for
(a(·), b1, b2, . . . , bp, â) ∈ E2, we want to solve the equation

P ′(x0, u0)(x, u) = (a(·), b1, b2, . . . , bp, â).

Now, suppose that u = 0. Then, from ( [25], pg 89), we know that the following
Volterra integral equation

z(t) = a(t) +

∫ t

0

(φx(x
◦(l), u◦(l), l)z(l)dl,

has a solution z ∈ PW([0, T ];Rn).
Next, since the impulsive linear variational equation (3.2) is controllable, for a point
(b1, b2, . . . , bp) ∈ IRnp such that

bk = bk − z(tk) + J ′
k(x

0(t−k ))z(t
−
k ), k = 1, 2, 3, . . . , p.

Then, there exists a control u ∈ Lr
∞ such that the corresponding solution y(t) of (3.2)

satisfies
y(T ) = Ξ∗(ΞΞ∗)−1â− z(T ).

Let us make the following change of variable x = y + z. Then

P ′(x0, u0)(x, u)(t) = ((y + z)(t)−∫ t

0

(φx(x
◦, u◦, l)(y + z)(l) + φu(x

◦, u◦, l)u(l))dl, S′(x, u), Ξ(y + z)(T )

)
= (y(t) + a(t)−∫ t

0

(φx(x
◦, u◦, l)y(l) + φu(x

◦, u◦, l)u(l))dl, S′(x, u), ΞΞ∗(ΞΞ∗)−1â

)
= (a(t), S′(x, u), â) .

Now, we shall see that S′(x, u) = (b1, b2, . . . , bp). In fact,

S′(x, u) =(
x(t1)− J ′

1(x
0(t−1 ))x(t

−
1 ), · · · · · · , x(tp)− J ′

p(x
0(t−p ))x(t

−
p )
)
=(

(y + z)(t1)− J ′
1(x

0(t−1 ))(y + z)(t−1 ), · · · , (y + z)(tp)− J ′
p(x

0(t−p ))(y + z)(t−p )
)

=
(
b1 + z(t1)− J ′

1(x
0(t−1 ))z(t

−
1 ), · · · · · · , bp + z(tp)− J ′

p(x
0(t−p ))z(t

−
p )
)

= (b1, b2, . . . , bp) .

Therefore, the operator P ′(x0, u0) is onto. Then, applying Lusternik’s Theorem 2.27,
we get that tangent cone K2 is given by

K2 = {(x, u) ∈ E1 /P
′(x◦, u◦)(x, u) = 0}.

i.e., K2 is the set of points (x, u) ∈ E1 such that

ẋ(t) = φx(x
◦(t), u◦(t), t)x(t) + φu(x

◦(t), u◦(t), t)u(t), t ̸= tk (5.12)

x(t+k ) = J ′
k(x

0(t−k ))x(t
−
k ), k = 1, 2, 3, . . . , p. (5.13)

Ξx(T ) = 0. (5.14)
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Consider the following linear subspaces

L1 = {(x, u) ∈ E1/(5.12)− (5.13) hold}, L2 = {(x, u) ∈ E1/ Ξx(T ) = 0}.

Then, K2 = L1 ∩ L2. Now, let us compute K+
2 . By Proposition 2.40, we have that

f22 ∈ L+
2 if, and only if, there exists a ∈ IRk such that

f22(x, u) = ⟨a, Ξx(T )⟩ ((x, u) ∈ E).

Moreover, the controllability of systems (3.1)- (3.2) implies that L1 + L2 is closed,
then it follows that L+

1 + L+
2 is w∗− closed; hence by Lemma 2.5 we obtain that

K+
2 = L+

1 + L+
2 .

Since L1 is a linear subspace, it follows from Theorem 10.1 of (See [18, pg 59]) that,

for any f21 ∈ L∗
1 , f21(x, u) = 0 for all (x, u) satisfying (5.12)-(5.13).

Euler-Lagrange Equation.

Clearly that K0, K1, K2, are convex cones. Hence, by Theorem 2.15 there are func-
tionals fi ∈ K+

i (i = 0, 1, 2, ) not all zero such that

f0 + f1 + f2 = f0 + f1 + f21 + f22 = 0. (5.15)

Equation (5.15) takes the following form


−λ0

∫ T

0

[Φx(x
◦, u◦, t)x(t) + Φu(x

◦, u◦, t)u(t)]dt+

+f ′1(x, u) + f21(x, u) + ⟨a, Ξx(T )⟩ = 0, ((x, u) ∈ E).

(5.16)

Now, for all u ∈ Lr
∞ there exists x, solution of equation (3.2) with x(0) = 0, then

(x, u) ∈ L1. Therefore f21(x, u) = 0.
Let ψ be a solution of the system

{
ψ̇(τ) = −φ∗

x(x
◦(τ), u◦(τ), τ)ψ(τ) + λ0Φx(x

◦(τ), u◦(τ), τ)
ψ(T ) = Ξ∗a

Multiplying both sides of this equation by x and integrating by parts from 0 to T , we
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get

λ0

∫ T

0

Φx(x
◦, u◦, t)x(t)dt− ⟨a, Ξx(T )⟩ =∫ T

0

⟨ψ̇(t), x(t)⟩dt+
∫ T

0

⟨φ∗
x(x

◦, u◦, t)ψ(t), x(t)⟩dt− ⟨a, Ξx(T )⟩ =

⟨ψ(t), x(t)⟩]T0 −
∫ T

0

⟨ψ(t), ẋ(t)⟩dt+
∫ T

0

⟨φ∗
x(x

◦, u◦, t)ψ(t), x(t)⟩dt− ⟨a, Ex(T )⟩ =

⟨Ξ∗a, x(T )⟩ − ⟨ψ(0), x(0)⟩ − ⟨a, Ξx(T )⟩+
∫ T

0

⟨ψ(t), φx(x
◦, u◦, t)x(t)− ẋ(t)⟩dt =

−
∫ T

0

⟨ψ(t), φu(x
◦, u◦, t)u(t)⟩dt = −

∫ T

0

⟨φ∗
u(x

◦, u◦, t)ψ(t), u(t)⟩dt.

Then from Euler–Lagrange equation (5.15), we obtain for (u ∈ Lr
∞[0, T ]), that

f ′1(u) =

∫ T

0

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t)u(t)⟩dt. (5.17)

Since f ′1 is a support of Q′
1 at the point u◦ ∈ Q′

1, from example 2.44, it follows that

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), U − u◦(t)⟩ ≥ 0,

for all U ∈M and almost all t ∈ [0, T ].

Remark 5.2. Now, we will see that under these assumptions, the case λ0 = 0, ψ = 0,
can not occurs. If ψ = 0, then ψ(T ) = Ξ∗a = 0. Thus

f22(x, u) = ⟨a, Ξx(T )⟩ = 0 ((x, u) ∈ E),

that is f22 ≡ 0. So, from equation (5.16), and the fact that λ0 = 0, which implies that
f0 = 0. Also, from (5.17), we have that f ′1(u) = 0 (u ∈ Lr

∞[0, T ]); then from Euler–
Lagrange Equation it follows that f21 = 0, hence

f2 = f21 + f22 = 0,

which contradicts Theorem 2.15.

Remark 5.3. Analysis of the exceptional cases. In the course of the proof we
have to made two additional assumptions: Firstly, we assumed that K0 ̸= ∅, and
secondly, we assumed that system

ẋ(t) = φx(x
◦(t), u◦(t), t)x(t) + φu(x

◦(t), u◦(t), t)u(t), t ∈ (0, τ ], (5.18)

is controllable.
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Now, we will prove, that these assumptions are superfluous. In fact, if K0 = ∅,
then by definition of K0, we have that

∫ T

0

[Φx(x
◦(t), u◦(t), t)x(t) + Φu(x

◦(t), u◦(t), t)u(t)]dt = 0 ((x, u) ∈ E).

Let us put λ0 = 1, ψ(T ) = Ξ∗a = 0, then, from last computation, we have that∫ T

0

⟨Φ∗
x(x

◦, u◦, t)ψ(t), x(t)⟩dt = −
∫ T

0

⟨φ⋆
u(x

◦, u◦, t)ψ(t), u(t)⟩dt,

for all (x, u) such that x is a solution of equation the (5.18). Then∫ T

0

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + Φu(x
◦(t), u◦(t), t)u(t)⟩dt = 0, (u ∈ Lr

∞[0, T ]),

which implies that

⟨−φ∗
u(x

◦, u◦, t)ψ(t) + Φu(x
◦, u◦, t), U − u◦(t)⟩ = 0,

for all U ∈M and almost all t ∈ [0, T ].

Remark 5.4. The controllability of the linear system,

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ (0, τ ], (5.19)

where A(t) = φx(x
◦(t), u◦(t), t) and B(t) = φu(x

◦(t), u◦(t), t), is equivalent to:

B∗(t)[Ψ∗]−1(t)z = 0, ∀t ∈ [0, T ] ⇒ z = 0.

Here Ψ(t) is the fundamental matrix of the uncontrolled system ż = A(t)z and
ψ(t) = [Ψ∗]−1(t)z0 is a solution of the adjoint initial value problem

ż = −A∗(t)z, z(0) = z0.

Now, suppose that system (5.19) is not controllable, then there is a non-trivial
function ψ ∈ PW([0, T ];Rn) that is a solution of

ψ̇(t) = −φ∗
x(x

◦(t), u◦(t), t)ψ(t),

such that, for almost all t ∈ [0, T ] it follows that

−φ∗
u(x

◦(t), u◦(t), t)ψ(t) = 0.

By taking λ0 = 0, we get that ψ is a solution of (3.4), and therefore

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t), U − u◦(t)⟩ ≥ 0,

for all U ∈M and almost all t ∈ [0, T ].

Throughout this reasoning, we have proved the following theorem:
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Theorem 5.1. Under conditions of Theorem 3.1. Let assume that Rank(Ξ) = q and
(x◦, u◦) ∈ E be a solution of Problem 5.1:
Then, there exists λ0 ∈ IR+0 and a function ψ ∈ PW([0, T ];Rn) such that λ0 and ψ
both are different from zero, and ψ is a solution of the following differential equation{

ψ̇(t) = −φ∗
x(x

◦(τ), u◦(τ), τ)ψ(τ) + λ0Φx(x
◦(τ), u◦(τ), τ)

ψ(T ) = Ξ∗a.
(5.20)

Moreover, for all U ∈M and almost all t ∈ [0, T ] the following inequality holds

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), U − u◦(t)⟩ ≥ 0. (5.21)

Remark 5.5. Consider the function

H(x, u, ψ, t) = ⟨φ∗(x, u, t), ψ(t)⟩ − λ0Φ(x, u, t).

Then
Hu(x

◦, u◦, ψ, t) = φ∗
u(x

◦, u◦, t)ψ(t)− λ0Φu(x
◦, u◦, t).

Since a necessary condition for H(x◦, u, ψ, t) to have a maximum on M , as a function
of u, is that −Hu(x

◦, u◦, ψ, t) be a support ot M at the point u◦(t), it follows that
(3.5) may be paraphrased as follows. If (x◦, u◦) is a solution of Problem (1.1) and
the assumptions of Theorem 3.1 hold, then H(x◦, u, ψ, t) as a function of u on M ,
satisfies the necessary conditions for a maximum for almost all 0 ≤ t ≤ T at the
point u = u◦(t). A comparison of this statement with the classic maximum principle
justifies the designation ”local maximum principle”. Specifically we have the following:

⟨−Hu(x
◦, u◦, ψ, t), U − u◦(t)⟩ ≥ 0 ⇐⇒
Hu(x

◦, u◦, ψ, t)u◦(t) ≥ Hu(x
◦, u◦, ψ, t)U.

Hence,

Hu(x
◦, u◦, ψ, t)u◦(t) = max

U∈M
Hu(x

◦, u◦, ψ, t)U, t ∈ [0, T ], a.e.

Since the linear system (3.1) is controllable, then slight modification of the proof of
Theorem 3.1 allows us to assume that λ0 = 1.

6. Example

Now, we shall give an example as an applications of the main result of this work. In
this regard, we will give below two previous propositions.

Proposition 6.1. Let x0 ∈ IRn
+ and A = (aij)n×n be a real matrix, such that

aij > 0 (i ̸= j, i, j = 1, 2, . . . , n). Then

eAt x0 ∈ IRn
+, (t ∈ IR).
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The proof of above proposition is trivial.
Let M ⊂ IRr be a set, then we define the set QM as follows:

QM := {u ∈ Lr
∞ [0, T ] / u(t) ∈M, t ∈ [0, T ], a.e.}.

Proposition 6.2. Let x0 ∈ IRn
+, and B = (bij)n×r a real matrix. Then there exists

M ⊂ IRr convex and closed, with
◦
M ̸= ∅ such that(

eAt x0 +

∫ t

0

eA(t−s)B u(s)ds

)
∈ IRn

+, (u ∈ QM , t ∈ [0, T ], a.e.).

Proof. Let {e1, e2, . . . , en} be the canonical basis of IRn, and define

αi := min
t∈[0, T ]

⟨ei, eAt x0⟩, (i = 1, 2, . . . , n),

V := (α1, α2, . . . , αn).

Then, by proposition 6.1 it follows that V ∈ IRn
+.

Let δ := min{αi / i = 1, 2, . . . , n}; then for all x ∈ IRn such that |x| < δ, we have
that V + x ∈ IRn

+.
Let us consider

K1 := max
t∈[0, T ]

∥eAt∥, K2 := max
t∈[0, T ]

∥e−At∥.

Then ∣∣∣∣∣
∫ T

0

eA(t−s)B u(s)ds

∣∣∣∣∣ < T K1K2∥B∥∥u∥∞,

and taking

M :=

{
U ∈ IRr / |U | ≤ δ

TK1K2∥B∥

}
,

we finish the proof.

Next, we shall consider the following example where Theorem 3.1 can be applied:

Example 6.3. Let n = 2, r = 1 and suppose that Φ satisfies the same conditions as
in the Problem 1.1, furthermore let us consider

B =

 b11

b12

 , A =

 a11 a12

a21 a22

 ; a12 > 0, a21 > 0

M :=

{
U ∈ R/ |U | ≤ δ

TK1K2∥B∥

}
,

where δ, K1, K2 are defined as in Proposition 6.2.
Let us consider the following problem∫ T

0

Φ(x(t), u(t), t)dt −→ min−loc. (6.1)
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(x, u) ∈ PW([0, T ];Rn)× Lr
∞([0, T ];Rr)

ẋ(t) = Ax(t) +Bu(t) (6.2)

x(0) = x0, x(T ) = x1; x0, x1 ∈ IR2
+. (6.3)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (6.4)

u(t) ∈M, t ∈ [0, T ], a.e. (6.5)

Let (x◦, u◦) ∈ E = PW([0, T ];Rn)× Lr
∞([0, T ];Rr) be a solution of the above prob-

lem, then conditions of Theorem 3.1 are fulfilled. In fact, clearly condition a) is
satisfied. Also, M closed and convex set with M◦ ̸= ∅.
c) The linear system (6.2) is controllable. Since this is an autonomous system, we
assume that Kalman’s Rank condition is satisfied (see [12, 13, 27]). i.e.,

Rank [B
...AB] = 2.

d) The linear system (6.2) with impulses (6.4) is controllable if the following condition
is assumed:

pmax ∥Jk∥ < 1, k = 1, 2, . . . , p.

(see [8, 29, 31, 33]). Hence, there exist λ0 ∈ IR+, a ∈ IR2, and a function ψ ∈
C([0, T ], IR2), which is a solution of the equation

ψ̇(t) = −A∗(t)ψ(t) + λ0Φx(x
◦(t), u◦(t), t), (6.6)

such that λ0 and ψ are not both zero, and for all U ∈ M and almost all t ∈ [0, T ],
we have that

⟨−B∗ ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), U − u◦(t)⟩ ≥ 0

or equivalently

max
U∈M

⟨B∗ ψ(t)− λ0 Φu(x
◦(t), u◦(t), t), U⟩ = ⟨B∗ ψ(t)− λ0 Φu(x

◦(t), u◦(t), t), u◦(t)⟩
(6.7)

for almost all t ∈ [0, T ].
Let us consider the particular case, in which

Φ(x, u) = Cu ((x, u, t) ∈ IR2 × IR× [0, T ]),

and let us see how should be the controls u ∈ L∞[0, T ] that solve the problem:

ψ̇(t) = −A∗(t)ψ(t) + λ0Φx(x
◦(t), u◦(t), t),

max(B∗ψ(t)− λ0 C)U = (B∗ψ(t)− λ0 C)u
◦(t), U ∈ [−ρ, ρ]

for almost all t ∈ [0, T ], where ρ = δ/K1K2 ∥B∥T.
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Let
NB∗ := {x ∈ IR2 /B∗x− λ0 C = 0},

S := {t ∈ [0, T ] /ψ(t) ̸∈ NB∗},

then u◦(t) := ρ sig (B∗ψ(t)− λ0 C) if t ∈ S.

This means that the optimal control should be of the “bang–bang” type over the
set S.

7. Optimal Control Problem for Impulsive Neutral
Differential Equations

In this section we will show how Dubovitskii–Milyutin theory can be applied to gener-
alize the Maximum Principle of [18] to the case of optimal control problems governed
by impulsive nonlinear neutral differential equations. We will also see that in a lin-
ear dynamics case, under certain additional conditions, the Maximum Principle is a
sufficient condition for optimality.

7.1. Maximum Principle for Neutral Differential Equations in
the Space PW([0, T ];Rn)× Lr

∞.

Let n, r ∈ N and T ∈ IR+, and consider the functions Φ, φ,Jk :

φ : IRn × IRr × [0, T ] −→ IR,

Φ : IRn × IRr × [0, T ] −→ IRn,

Jk : IRn −→ IRn,
f : IRn −→ IRn

where PW([0, T ];Rn) and Lr
∞ are define by

PW([0, T ];Rn) = {z : [0, T ] → Rn : z ∈ C(J ′;Rn),∃z(t−k ), z(t
−
k )

and z(tk) = z(t−k ), k = 1, 2, . . . , p},

where J = [0, T ] and J ′ = J\{t1, t2, . . . , tp}, endowed with the norm

∥z∥0 = sup
t∈[0,T ]

∥z(t)∥Rn ,

and Lr
∞ = Lr

∞([0, T ];Rr) is the space of measurable function essentially bounded with
essential norm.

Let us suppose the following conditions are fulfilled
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a) Φ, φ, f and Jk are continuous functions, with derivatives
Φx, Φu, φx, φu, J ′

k, f
′ are bounded functions on compact sets of

IRn × IRr × [0, T ].

b) M ⊂ IRr is convex and closed with
◦
M ̸= ∅.

c) The following linear neutral system is controllable on [0, T ],

d

dt
[x(t)+f ′(x◦(t))x(t)] = φx(x

◦(t), u◦(t), t)x(t)+φu(x
◦(t), u◦(t), t)u(t). (7.1)

d) The corresponding impulsive linear variational equations around the point
(x◦, u◦) ∈ E is controllable on [0, T ] for any b = (b1, b2, . . . , bp) ∈ (IRn)p{ d

dt
[(I + f ′(x◦(t)))x(t)] = φx(x

◦(t), u◦(t), t)x(t) + φu(x
◦(t), u◦(t), t)u(t),

x(t+k ) = J ′
k(x

0(t−k ))x(t
−
k ) + bk, k = 1, 2, 3, . . . , p.

(7.2)

e) The following conditions hold for all k = 1, 2, 3, . . . , p

sup
t∈[0,T ]

∥f ′(x◦(t))∥ < 1, f ′(x◦(tk))J ′
k(x

0(t−k )) = J ′
k(x

0(t−k ))f
′(x◦(tk)). (7.3)

Let us consider the following optimal control problem governed by a nonlinear neutral
differential equation:

Problem 7.1. ∫ T

0

Φ(x(t), u(t), t)dt −→ min loc. (7.4)

(x, u) ∈ E := PW([0, T ];Rn)× Lr
∞([0, T ];Rr), (7.5)

d

dt
[x(t) + f(x(t))] = φ(x(t), u(t), t), x(0) = x0 (7.6)

x(T ) = x1; x1, x0 ∈ IRn, (7.7)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (7.8)

u(t) ∈M, t ∈ [0, T ], a.e., (7.9)
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Theorem 7.1. Let us suppose that conditions a) - e) are fulfilled, and (x◦, u◦) ∈ E
is a solutions of the Problem 7.1.
Then, there exists λ0 ∈ IR+0 and a function ψ ∈ PW([0, T ];Rn) such that λ0 and ψ
are not both zero.
Moreover, ψ is a solution of the following differential equation{

ψ̇(τ) = −
(
φx(x

◦(τ), u◦(τ), τ)Γ−1(τ)
)∗
ψ(τ) + λ0Φx(x

◦(τ), u◦(τ), τ)
ψ(T ) = a

(7.10)

where Γ(τ) = I+f ′(x◦(τ)), and also, for all U ∈M and almost all t ∈ [0, T ] it follows

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), U − u◦(t)⟩ ≥ 0. (7.11)

Proof. Let F : E −→ IR be a function defined as follows

F (x, u) =

∫ T

0

Φ(x(t), u(t), t)dt,

and let Q := Q1 ∩Q2 where Q2, Q1 are given by pairs sets (x, u) ∈ E, which satisfy
(7.6)-(7.8) and (7.9) respectively.
Then, Problem 7.1 is equivalent to F (x, u) −→ min loc

(x, u) ∈ Q.

a) Analysis of the function F .

Let K0 := Kd(F, (x
◦, u◦)) be the decay cone of F in the point (x◦, u◦). Then,

by Theorem 2.22, we have that

K0 = {(x, u) ∈ E /F (x◦, u◦)(x, u) < 0}.

Suppose for a moment that K0 ̸= ∅, then by Theorem 2.29 we obtain

K+
0 = {−λ0 F (x◦, u◦) / λ0 ∈ IR+0}.

By example 2.23, we obtain that

F
′
(x◦, u◦)(x, u) =

∫ T

0

[Φx(x
◦, u◦, t)x(t)+Φu(x

◦, u◦, t)u(t)]dt, ((x, u) ∈ E).

Therefore, for all f0 ∈ K+
0 , there exists λ0 ∈ IR+0 such that

f0(x, u) = −λ0
∫ T

0

[Φx(x
◦, u◦, t)x(t) + Φu(x

◦, u◦, t)u(t)]dt, ((x, u) ∈ E).
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b) Analysis of constraint Q1.
Let us consider the set

Q′
1 := {u ∈ Lr

∞[0, T ] / u(t) ∈M, t ∈ [0, T ], a.e.},

and Q1 = PW([0, T ];Rn)×Q′
1.Moreover, by hypothesisM is convex and closed,

with
◦
M= ∅. So, the following statements hold

i) Q1, Q
′
1 are convex and closed.

ii)
◦
Q1 ̸= ∅,

◦
Q′

1 ̸= ∅.

If we call K1 the admissible cone to Q1 in (x◦, u◦) ∈ Q1, then

K1 = PW([0, T ];Rn)×K ′
1,

where K ′
1 is the admissible cone to Q′

1 in u◦ ∈ Q′
1.

Therefore, for all f1 ∈ K+
1 there is f ′1 ∈ K ′+

1 such that f1 = (0, f ′1).

By Theorem 2.26, it follows that f ′1 is a support of Q′
1 at u◦.

c) Analysis of the constraint Q2.

Let us find the tangent cone to Q2 at the point (x◦, u◦)

K2 := KT (Q2, (x
◦, u◦)).

Consider the space E1 = PW([0, T ];Rn) × IRn(1+p) = E2 and the operator:
P : E1 → E2 defined by

P (x, u)(t) = (L(x, u)(t), S(x, u), x(T )− x1) ,

where

L(x, u)(t) = x(t)− x0 − f(x0) + f(x(t))−
∫ t

0

φ(x(l), u(l), l)dl,

S(x, u) =
(
x(t1)− J1(x(t

−
1 )), x(t2)− J2(x(t

−
2 )) · · · , x(tp)− Jp(x(t

−
p ))
)
.

Then
P ′(x0, u0)(x, u) = (L′(x, u), S′(x, u), x(T )) ,

where

L′(x, u)(t) = x(t) + f ′(x◦(t))x(t)−
∫ t

0

(φx(x
◦, u◦, l)x(l) + φu(x

◦, u◦, l)u(l))dl
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S′(x, u) =
(
x(t1)− J ′

1(x
0(t−1 ))x(t

−
1 ), · · · · · · , x(tp)− J ′

p(x
0(t−p ))x(t

−
p )
)
.

We want to find conditions under which the operator P ′(x0, u0) is onto in order
to apply Lustenik theorem 2.27. So, for (a(·), b1, b2, . . . , bp, x1) ∈ E2, we want
to solve the equation

P ′(x0, u0)(x, u) = (a(·), b1, b2, . . . , bp, x1).

Now, suppose that u = 0. Then, we want to solve the following integral differ-
ential equation

Γ(t)z(t) = a(t) +

∫ t

0

(φx(x
◦(l), u◦(l), l)z(l)dl,

which is equivalent to the integral equation

z(t) = Γ−1(t)a(t) +

∫ t

0

Γ−1(t)φx(x
◦(l), u◦(l), l)z(l)dl.

From ( [25], pg 89), we know that this is a Volterra integral equation, which has
a solution z ∈ PW([0, T ];Rn).
Next, since the impulsive linear variational equation (7.2) is controllable for all
points b ∈ IRnp. In particular, for a point (b1, b2, . . . , bp) ∈ IRnp such that

bk = bk − z(tk) + J ′
k(x

0(t−k ))z(t
−
k ), k = 1, 2, 3, . . . , p,

there exists a control u ∈ Lr
∞ such that the corresponding solution y(t) of (7.2)

satisfies y(T ) = x1 − z(T ).
Therefore,

Γ(t)y(t) =

∫ t

0

(φx(x
◦, u◦, l)y(l) + φu(x

◦, u◦, l)u(l))dl, t ∈ [0, T ].

Let us make the following change of variable x = y + z. Then

L′(x◦, u◦)(y + z, u)(t) = Γ(t)y(t) + Γ(t)z(t)−∫ t

0

(φx(x
◦, u◦, l)(y + z)(l) + φu(x

◦, u◦, l)u(l))dl

= Γ(t)y(t) + a(t)−
∫ t

0

(φx(x
◦, u◦, l)y(l) + φu(x

◦, u◦, l)u(l))dl = a(t).

Clearly that x(T ) = x1. Now, we shall see that S′(x, u) = (b1, b2, . . . , bp). In
fact,

S′(x, u) =(
x(t1)− J ′

1(x
0(t−1 ))x(t

−
1 ), · · · · · · , x(tp)− J ′

p(x
0(t−p ))x(t

−
p )
)
=(

(y + z)(t1)− J ′
1(x

0(t−1 ))(y + z)(t−1 ), · · · , (y + z)(tp)− J ′
p(x

0(t−p ))(y + z)(t−p )
)

=
(
b1 + z(t1)− J ′

1(x
0(t−1 ))z(t

−
1 ), · · · · · · , bp + z(tp)− J ′

p(x
0(t−p ))z(t

−
p )
)

= (b1, b2, . . . , bp) .
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Thus

P ′(x0, u0)(x, u)(t) = (L′(x◦, u◦)(x, u), S′(x, u), x(T )) = (a(·), b1, b2, . . . , bp, x1).

Therefore, the operator P ′(x0, u0) is onto. Then, applying Lusternik’s theorem
2.27, we get that tangent cone K2 is given by

K2 = {(x, u) ∈ E1 /P
′(x◦, u◦)(x, u) = 0}.

i.e., K2 is the set of points (x, u) ∈ E1 such that

[Γ(t)x(t)]′ = φx(x
◦(t), u◦(t), t)x(t) + φu(x

◦(t), u◦(t), t)u(t),

x(t+k ) = J ′
k(x

0(t−k ))x(t
−
k ), k = 1, 2, 3, . . . , p.

x(T ) = 0

From condition (7.3), we can see that this system is equivalent to the following

[Γ(t)x(t)]′ =
(
φx(x

◦(t), u◦(t), t)Γ−1(t)
)
Γ(t)x(t) + φu(x

◦(t), u◦(t), t)u(t),

Γ(t+k )x(t
+
k ) = J ′

k(x
0(t−k ))Γ(t

−
k )x(t

−
k ), k = 1, 2, 3, . . . , p.

Γ(T )x(T ) = 0

Making the change of variable z(t) = Γ(t)x(t), we get the following equivalent
controllable system

z(t)′ =
(
φx(x

◦(t), u◦(t), t)Γ−1(t)
)
z(t) + φu(x

◦(t), u◦(t), t)u(t),(7.12)

z(t+k ) = J ′
k(x

0(t−k ))z(t
−
k ), k = 1, 2, 3, . . . , p. (7.13)

z(T ) = 0 (7.14)

Consider the following linear subspaces

L1 = {(z, u) ∈ E1/(7.12)− (7.13) hold}, L2 = {(z, u) ∈ E1/ z(T ) = 0}.

Then, K2 = L1 ∩ L2. Now, let us compute K+
2 . By Proposition 2.40, we have

that f22 ∈ L+
2 if, and only if, there exists a ∈ IRn such that

f22(x, u) = ⟨a, z(T )⟩ ((x, u) ∈ E).

Moreover, the controllability of systems (7.1)- (7.2) implies that L1 + L2 is
closed, then it follows that L+

1 + L+
2 is w∗− closed; then by Lemma 2.5, we

obtain that
K+

2 = L+
1 + L+

2 .

Since L1 is a linear subspace, it follows from Theorem 2.28 that, for any

f21 ∈ L+
1 , f21(z, u) = 0 for all (x, u) satisfying (7.12)-(7.13).
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e) Euler-Lagrange equation.

It is easy to see that K0, K1, K2, are convex cones. Hence, by
Theorem 2.15 there are functionals fi ∈ K+

i (i = 0, 1, 2, ) not all zero such
that

f0 + f1 + f2 = f0 + f1 + f21 + f22 = 0. (7.15)

Equation (7.15) can be written in the following form

−λ0
∫ T

0

[Φx(x
◦, u◦, t)x(t) + Φu(x

◦, u◦, t)u(t)]dt+

f ′1(x, u) + f21(x, u) + ⟨a, x(T )⟩ = 0, ((x, u) ∈ E).

Now, for all u ∈ Lr
∞ there exist z, solution of system (7.12)-(7.13) with z(0) = 0.

Then (z, u) ∈ L1. Therefore f21(z, u) = 0.

Let ψ be the solution of equation (7.10), that is{
ψ̇(τ) = −

(
φx(x

◦(τ), u◦(τ), τ)Γ−1(τ)
)∗
ψ(τ) + λ0Φx(x

◦(τ), u◦(τ), τ)
ψ(T ) = a

Multiplying both sides of this equation by z = Γ(τ)x and integrating from 0 to
T , we get

λ0

∫ T

0

Φx(x
◦, u◦, t)z(t)dt− ⟨a, z(T )⟩ =

∫ T

0

⟨ψ̇(t), z(t)⟩dt

+

∫ T

0

⟨
(
φx(x

◦(t), u◦(t), t)Γ−1(τ)
)∗
ψ(t), z(t)⟩dt− ⟨a, z(T )⟩ =

⟨ψ(t), z(t)⟩]T0 −
∫ T

0

⟨ψ(t), ż(t)⟩dt

+

∫ T

0

⟨
(
φx(x

◦(t), u◦(t), t)Γ−1(τ)
)∗
ψ(t), z(t)⟩dt− ⟨a, z(T )⟩ =

⟨ψ(T ), z(T )⟩ − ⟨ψ(0), z(0)⟩ − ⟨a, z(T )⟩

+

∫ T

0

⟨ψ(t), φx(x
◦, u◦, t)Γ−1(τ)z(t)− ż(t)⟩dt =∫ T

0

⟨ψ(t), φx(x
◦, u◦, t)x(t)− [Γ(τ)x(t)]′⟩dt =

−
∫ T

0

⟨ψ(t), φu(x
◦, u◦, t)u(t)⟩dt = −

∫ T

0

⟨φ∗
u(x

◦, u◦, t)ψ(t), u(t)⟩dt.

Then, from Euler–Lagrange equation (7.15), we obtain for (u ∈ Lr
∞[0, T ]), that

f ′1(t) =

∫ T

0

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t)u(t)⟩dt. (7.16)
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Since f ′1 is a support of Q′
1 at the point u◦ ∈ Q′

1, from example 2.44, it follows
that

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t) + λ0 Φu(x
◦(t), u◦(t), t), U − u◦(t)⟩ ≥ 0,

for all U ∈M and almost all t ∈ [0, T ].
Now, we will see that the case λ0 = 0, ψ = 0, is not possible. In fact

If ψ = 0, then ψ(T ) = a = 0. Thus

f22(x, u) = ⟨a, x(T )⟩ = 0 ((x, u) ∈ E),

that is f22 ≡ 0. So, from the fact that λ0 = 0, we get that f0 = 0. Also, from
(7.16), we have that f ′1(u) = 0 (u ∈ Lr

∞[0, T ]); then from Euler– Lagrange
equation it follows that f21 = 0, where

f2 = f21 + f22 = 0,

which contradicts Theorem 2.15.

So far, we have two additional assumptions:

Firstly, we assumed that K0 ̸= ∅, and secondly, we assumed that the system

[Γ(t)x(t)]′ = φx(x
◦, u◦, t)x(t) + φu(x

◦, u◦, , t)u(t)

is controllable.

Now, we will prove, that these assumptions are superfluous. In fact, if K0 = ∅,
then by definition of K0, we have that

∫ T

0

[Φx(x
◦(t), u◦(t), t)x(t) + Φu(x

◦(t), u◦(t), t)u(t)]dt = 0 ((x, u) ∈ E).

Let us put λ0 = 1, ψ(T ) = a = 0, then, from last computation, we have that

∫ T

0

Φx(x
◦, u◦, t)x(t)dt = −

∫ T

0

⟨φ∗
u(x

◦, u◦, t)ψ(t), u(t)⟩dt,

for all (x, u) such that x is a solution of equation the (7.12)-(7.13). Then∫ T

0

⟨φ∗
u(x

◦(t), u◦(t), t)ψ(t) + Φu(x
◦(t), u◦(t), t), u(t)⟩dt = 0 (u ∈ Lr

∞[0, T ])

which implies that
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⟨−φ∗
u(x

◦, u◦, t)ψ(t) + Φu(x
◦, u◦, t), U − u◦(t)⟩ = 0,

for all U ∈M and almost all t ∈ [0, T ].

Now, suppose that system (7.1) is not controllable, then there is a non-trivial
function ψ ∈ PW([0, T ];Rn) that is a solution of

ψ̇(t) = (φx(x
◦(t), u◦(t), t)Γ−1(t))∗ψ(t),

such that, for all t ∈ [0, T ] it follows that

−φ∗
u(x

◦(t), u◦(t), t)ψ(t) = 0.

By taking λ0 = 0, we get that ψ is a solution of (7.10), and therefore

⟨−φ∗
u(x

◦(t), u◦(t), t)ψ(t), U − u◦(t)⟩ ≥ 0,

for all U ∈M and almost all t ∈ [0, T ].

Thus, the proof of Theorem 7.1 is totally completed.

8. Open Problems

Our first open problem concerns with optimal control problems for impulsive nonlinear
neutral differential equations with modified boundary condition. In other word, we
want to propose the following optimal control problem for future research

8.1. Open Problem

Problem 8.1. ∫ T

0

Φ(x(t), u(t), t)dt −→ min loc. (8.1)

(x, u) ∈ E := PW([0, T ];Rn)× Lr
∞([0, T ];Rr), (8.2)

d

dt
[x(t) + f(x(t))] = φ(x(t), u(t), t), x(0) = x0 (8.3)

x0 ∈ IRn; Gi(x(T)) = 0, i = 1, 2, . . . , q. (8.4)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (8.5)

u(t) ∈M, t ∈ [0, T ], a.e., (8.6)
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8.2. Open Problem

Second open problem is about optimal control problem on time scales. Basically, we
want to analyze the following optimal control problem on time scales for our future
investigation:

Problem 8.2. ∫ T

0

Φ(x(t), u(t), t)∆t −→ min loc. (8.7)

(x, u) ∈ E := PC([0, T ]T; IR
n)× Crd([0, τ ]T, IR

r), (8.8)

x∆(t) = φ(x(t), u(t), t), x(0) = x0 (8.9)

x0 ∈ IRn; Gi(x(T)) = 0, i = 1, 2, . . . , q. (8.10)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (8.11)

u(t) ∈M, t ∈ [0, T ]T, a.e., (8.12)

where the state function x(t) ∈ IRn, the control u belongs to Crd([0, τ ]T, IR
r), the

points tk ∈ T are right dense for k = 1, . . . , p with 0 ≤ t1 < · · · < tp < τ , x(t+k ) =
lim

h→0+
x(tk + h), x(t−k ) = lim

h→0+
x(tk − h) denotes the left and right limits of x(t) at

t = tk in terms of time scales. Also, we consider the Banach space:

PC([0, T ]T; IR
n) = {x : [0, τ ]T −→ IRn : x ∈ C(J ′; IRn), there exist x(t+k ), x(t

−
k )

and x(tk) = x(t−k ), k = 1, 2, . . . , p}

where J ′ = [0, T ]T \ {t1, . . . , tp}, is endowed with the norm

∥x∥PC = sup{∥x(t)∥ : t ∈ [0, T ]T}.

8.3. Open Problem

In the third problem we will study an optimal control problem governed by differential
equations of the neutral type on time scales:

Problem 8.3. ∫ T

0

Φ(x(t), u(t), t)∆t −→ min loc. (8.13)

(x, u) ∈ E := PC([0, T ]T; IR
n)× Crd([0, τ ]T, IR

r), (8.14)

[x(t) + f(t, x(t))]∆ = φ(x(t), u(t), t), x(0) = x0 (8.15)
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x0 ∈ IRn; Gi(x(T)) = 0, i = 1, 2, . . . , q. (8.16)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (8.17)

u(t) ∈M, t ∈ [0, T ]T, a.e. (8.18)

8.4. Open Problem

Our fourth open problem can be an optimal control system governed by an impulsive
equation of the neutral type and nonlocal conditions. It can also be formulated in
time scale .

Problem 8.4. ∫ T

0

Φ(x(t), u(t), t)dt −→ min loc. (8.19)

(x, u) ∈ E := PW([0, T ];Rn)× Lr
∞([0, T ];Rr), (8.20)

d

dt
[x(t) + f(t, x(t))] = φ(x(t), u(t), t), x(0) = g(x) + x0 (8.21)

x0 ∈ IRn; Gi(x(T)) = 0, i = 1, 2, . . . , q. (8.22)

x(t+k ) = x(t−k ) + Jk(x(tk)), k = 1, 2, 3, . . . , p. (8.23)

u(t) ∈M, t ∈ [0, T ], a.e. (8.24)

8.5. Open Problem

Our fifth open problem deals with an optimal control problem for non-autonomous
semilinear neutral differential equations with unbounded delay, non-instantaneous
impulses, and nonlocal conditions. Specifically, we are interested in finding a maximal
principle for the following problem.

Problem 8.5. ∫ T

0

Φ(x(t), u(t), t)dt −→ min loc. (8.25)

(x, u) ∈ E := PW((−∞, T ];Rn)× Lr
∞([0, T ];Rr), (8.26)

d

dt
[x(t)− g(t, xt)] = A(t)x(t) + B(t)u(t) + f(t, xt, u(t)), t ∈

N⋃
k=0

J1
k , (8.27)

x(t) = Γk(t, x(t
−
k ), u(t

−
k )), t ∈ J2

k , k = 1, . . . , N, (8.28)

x(s) + ζ(xλ1
, . . . , xλq

)(s) = ϕ(s) s ∈ (−∞, 0]. (8.29)
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x(T ) = x1; x1 ∈ IRn, ϕ ∈ L, (8.30)

u(t) ∈M, t ∈ [0, T ]T, a.e., (8.31)

where the state function x(t) takes values in IRn, meanwhile the control u(·) be-
longs to Lr

∞([0, T ];Rr), the space of admissible control functions. The matrices
A(t) and B(t) are continuous of order n × n and n × m, separately. The functions
xt : (−∞, 0] −→ IRn given by xt(θ) = x(t + θ), θ ≤ 0, belong to the phase space L
and represent the history of x up to t. Here 0 ≤ λ1 < λ2 < · · · < λq < T are prefixed
numbers selected conveniently according the phenomenon to be modelled. Similarly,
s0 = 0 < t1 < s1 < t2 < · · · < tN < sN < tN+1 = T , J0 = [0, t1], J

1
k = (sk, tk+1] and

J2
k = (tk, sk]. The functions g : [0, T ]× L → IRn, f : [0, T ]× L× IRm → IRn, xt ∈ L,
ϕ ∈ L, Γk : (tk, sk] × IRn × IRm → IRn and ζ : Lq → L are appropiate functions. In
particular, Γk, k = 1, 2, ..., describes the non-instantaneous impulses in the model and
ζ denotes the nonlocal conditions. For more information about the controllability of
differential equations with noninstantaneous pulses, nonlocal conditions, and infinite
delay, one can review the following references [11, 17, 28, 30].

9. Conclusion and Final Remark

As we have seen in this work, Pontryaguin’s maximum principle is still valid for
optimal control problems governed by differential equations with impulses as long as
the impulses are small in some sense; that is, the linear variational equation around
the optimal point is controllable. In many articles, of which we can mention ( [7, 8,
10, 28, 29, 30, 31, 32, 33, 36]), it has already been verified that the controllability of
the linear system is robust if we add impulses to the differential equation, delays and
the non-local conditions as disturbances of the system. So, here we have seen that
the maximum principle remains invariant under certain conditions on the impulses,
so we believe that we can also say something if we add non-local conditions, and also
consider dynamical equations on time scales.

Acknowledgment

The authors would like to express their thanks to the editor and anonymous ref-
erees for constructive comments and suggestions that improved the quality of this
manuscript.

Statements and Declarations
Data availability statement:
Data sharing not applicable to this article as no data sets were generated or analysed
during the current study.
Competing Interests: The author have no conflicts of interest to declare that are
relevant to the content of this article.
Funding Acknowledgements: The author received no financial support for the
research, authorship, and/or publication of this article.



Maximum principle for impulsive differential equations 65

References

[1] I. Abouelkheir, F. El Kihal, M. Rachik, I. Elmouki Optimal impulse vaccination
approach for an SIR control model with short-term immunity, Mathematics, Vol.
7 (2019) N. 5 pp. 420, Multidisciplinary Digital Publishing Institute.

[2] R. P. Agarwal, H. Leiva, L. Riera, S. Lalvay, Existence of Solutions for Impulsive
Neutral Semilinear Evolution Equations with Nonlocal Conditions, Discontinuity,
Nonlinearity, and Complexity 11 (2) (2022) 1-18.

[3] R. Agarwal, S. Hristova, D. O’Regan, Non-instantaneous impulses in differen-
tial equations, Springer, Cham (2017), doi:https://doi.org/10.1007/978-3-319-
66384-5.

[4] A.V. Arutyunov, D.Y. Karamzin, F.L. Pereira, State constraints in impulsive
control problems: Gamkrelidze-like conditions of optimality, Journal of Optimiza-
tion Theory and Applications, Springer, 166 (2) (2015) 440–459.

[5] M.J. Ayala, H. Leiva, D. Tallana, Existence of solutions for retarded equations
with infinite delay, impulses, and nonlocal conditions, submited for possible pub-
lication 2020.

[6] L. Bai, J. J. Nieto, J. M. Uzal, On a delayed epidemic model with non-
instantaneous impulses, Communications on Pure and Applied Analysis, 19 (4)
(2020) 1915–1930, doi:https://doi.org/10.3934/cpaa.2020084

[7] O. Camacho, H. Leiva, L. Riera-Segura, Controllability of semilinear neutral
differential equations with impulses and nonlocal conditions, Math Meth Appl
Sci. 2022, 1–14. DOI: 10.1002/mma.8340

[8] R. Chachalo, H. Leiva, L. Riera-Segura, Controllability of non-autonomous semi-
linear neutral equations with impulses and nonlocal conditions, Journal Mathe-
matical Control Science and Applications, 6 (2) (July-December, 2021).

[9] A. Coronel, F. Huancas, E. Lozada, M. Rojas-Medar, The dubovit-
skii and milyutin methodology applied to an optimal control problem
originating in an ecological system, Mathematics 2021 Vol.9 N. 479.
https://doi.org/10.3390/math9050479.

[10] D. Cabada, R. Gallo, Hugo Leiva, Existence of solutions of semilinear time vary-
ing differential equations with impulses, delays and nonlocal conditions, Article
submitted for publication.

[11] Y. Chen, K. Meng, Stability and solvability for a class of optimal control problems
described by non-instantaneous impulsive differential equations, Advances in Dif-
ference Equations (2020) 2020:524, https://doi.org/10.1186/s13662-020-02919-z

[12] R.F. Curtain, A.J. Pritchard, Infinite Dimensional Linear Systems. Lecture
Notes in Control and Information Sciences, 8, Springer Verlag, Berlin (1978).



66 H. Leiva

[13] R.F. Curtain, H.J. Zwart, An Introduction to Infinite Dimensional Linear Sys-
tems Theory. Text in Applied Mathematics, 21, Springer Verlag, New York
(1995).

[14] A.V. Dmitruk, On the development of Pontryagin’s maximum principle in the
works of A. Ya. Dubovitskii and A.A. Milyutin, Control and Cybernetis, 38 (4A)
(2009).

[15] A. Dmitruk, I. Samylovskiy, On the relation between two approaches to necessary
optimality conditions in problems with state constraints, Journal of Optimization
Theory and Applications, Springer, 173 (2) (2017) 391–420.

[16] Y.A. Dubovitskii, A.A. Milyutin, Extremum problems in the presence of restric-
tions, Elsevier, 5 (3) (1965) 1-80.
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