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ABSTRACT: This paper concerns the asymptotic behaviour of the
initial boundary value problem of a class of reaction-diffusion systems
(coupled parabolic systems) posed in a thin domain with Dirichlet-Fourier
boundary conditions. We first prove the existence and uniqueness of the
solution to the problem for fixed € > 0 by the Galerkin method. Then,
we give the characterization of the limiting behaviour of these solution as
the thinness tends to zero.
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1. Introduction

Let Q¢ be a bounded open subset of R? with a sufficiently regular boundary 9Q°. We
define the thin domain as follows

QF = {x:(xl,xg) eR? 0<z1 <L,0< o <sh(x1)},

where € > 0 is a small parameter that will tend to zero and h (.) is a function of class
C! defined on [0, L] such that

0<h= min h(z;) <h(z;) <h= max h(x;), Vo1 €[0,L].
z1€[0,L] z1€[0,L]

The boundary of Q¢ consists of three parts: 0Q° = 9Qf U 005 U 995, where 0Q] =
{x € 90° : 9 = eh (x1)} is the upper boundary, 903 = ]0, L[ is the bottom boundary
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and 095 = ({1 =0} U {z1 = L}) x]0,eh (z1)] is the lateral part of the boundary of
Qe.

In the thin domain €2, we are interested in analyzing the behaviour of the so-
lutions, as the parameter e — 0, of the following coupled parabolic problem with
Dirichlet-Fourier boundary conditions

Opu® — Age (uF) + A%0° = £ on Q° x (0,7), (1.1)
0" — Age (v°) + A°u® = ¢° on Q° x (0,7, (1.2)
zg } (095 U0S) x (0,T) (1.3)

g, r* € RY : Opas (u )—&—Fu —rv* =0
35,7 € RE ¢ By e (0°) + 50" + r7uf = 0 on 10, L[ x (0,T), (1.4)

where A< (+) is the differential operator given by
2
A () = Z O, [CZ () az] ( )] )
i,j=1

A® is a positive constant, f°(-), ¢°(-), ci; (-) are given functions and Oy, (1) =
Zf j=1¢5j (¥) O (*) .n; indicate the derivative compared to the external normal on
the boundary ]0, L[, such that n = (0, —1) is the unit outward normal to ]0, L[. We

complete the problem (1.1) — (1.4) with the following initial conditions
(u®(z,0),v%(x,0)) = (0,0), Vz e Q°. (1.5)
We will deal with the problem (1.1) — (1.5) under the following conditions:
¢ € LT (), ¢ () =¢5, (1), 1 <4, <2,
also Ju. > 0, such that Vn € R?

2 2

Z )ity = fe Z (ni)z :

j=1 i=1

The study of thin structures with coarse features, fluids filling fine spheres, or even
the process of chemical diffusion in the presence of narrow grains is very common in
engineering and applied sciences. Recently, the study of the problems of thin struc-
tures has been extended to include many problems arising in applications such as
mechanics of solids (thin rods, plates, shells), fluid dynamics (lubrication, meteoro-
logical problems, ocean dynamics). We refer to ( [17], [11]) for some concrete applied
problems.

Analyzing the properties of thin structures and the processes that take place on
them and understanding how the micro-geometry of a thinner structure affects the
overall properties of a material is a very important issue in engineering and materials
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design. In this regard, obtaining the specific equations of primitive models allows
analysis of how different micro-scales affect primitive problems and allows for study
and understanding in more complex situations.

Mathematically, the behaviour of the solutions of partial differential equations
dealing with the problems of thin domains is a subject that has been addressed in the
literature by different authors, we may mention; In [1], they studied the behaviour of
the solutions of nonlinear parabolic problems posed in a domain that degenerates into
a line segment (thin domain) which has an oscillating boundary. In the paper [15], the
authors investigated the asymptotic behavior of the solutions to the p-Laplacian equa-
tion posed in a 2-dimensional open set which degenerates into a line segment when a
positive parameter € goes to zero. In [3], they studied the asymptotic behaviour of
the solution of a boundary-value problem for the second-order elliptic equation in the
bounded domain ¢ C R? with Robin type boundary conditions in the oscillating part
of the boundary. The authors in [12], examined the limiting behaviour of dynamics
for stochastic reaction-diffusion equations driven by an additive noise and a determin-
istic non-autonomous forcing on an (n + 1)-dimensional thin region. A nonuniform
Neumann boundary-value problem was considered for the Poisson equation in a thin
domain €2° coinciding with two thin rectangles connected through a joint of diameter
O (g) in [10]. For the Stokes system in a thin domain with slip boundary condi-
tions, we mention the works ( [2], [7]). For the case of thin elastic structures, there
are many works of literature, we mention for example; The authors in [4], addressed
the problem of the junction between 3-dimensional and 2-dimensional linearly elastic
structures and various asymptotic developments for the junction between plates. The
asymptotic analysis of a dynamical problem of elasticity with non-linear dissipative
term and non-linear friction of Tresca type was studied in [5]. Along the same lines,
the authors in [6], have proved the asymptotic analysis of the solutions of a linear
viscoelastic problem with a dissipative and source terms in a three-dimensional thin
domain Qf, with non-linear boundary conditions. The authors in [8], were interested
in studying the asymptotic analysis of a mathematical model involving a frictionless
contact between an quasi-static electro-viscoelastic and a conductive foundation in a
three-dimensional thin domain Q°.

On the other hand, a lot of mathematical systems models have been recently
used to study pattern formation in population ecology, morphogenesis, neurobiology,
chemical reactor theory, and in other fields, see for example ( [18], [16], [9]). These
phenomena are usually described by the coupled parabolic systems similar to (1.1)-
(1.5).

The main purpose of the paper is to prove the existence and uniqueness of the
weak solution for the boundary value problem (1.1) —(1.5), and study the asymptotic
behaviour of the solution when € tends to zero.

The rest of the paper is organized as follows. In Section 2, we derive the weak
formulation of the problem and prove the theorem of the existence and uniqueness
of the weak solution by the classic Faedo-Galerkin method. In Section 3, we seek to
know the behaviour of the solution when the small parameter ¢ tend to zero. For
this purpose, we use the technique of the change of the variable to establish some
estimates independent of the parameter . These estimates will be useful in order to
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prove the convergence results and the limit problem.

2. Weak formulation of the problem

For obtain the weak formulation of the problem, we introduce some spaces: let L? (QF)
be the usual Lebesgue space with the norm denoted by ||-|[;2(q-) and H! (9¢) be the
Sobolev space

H' () ={ue L*(Q°) : 9,,uc L* (Q°), j =1,2}.

We denote by H{ (92°) the closure of D (Q°) in H* (QF), and H ! (Q¢) the dual space
of Hj (9°). Let X a Banach space endowed with the norm ||-||y, we denotes by
L?(0,T; X) the space of functions u : (0,7) — X such that u (t) is measurable for
dt. This space is a Banach space endowed with the norm

T
el 2 070y = ( / lu(s)]1% ds)

We multiply the equation (1.1) by ¢ and the equation (1.2) by ¢ where (p,¢) €
HY(Q%)2, then we integrate over Q° and applying Green’s formula, we obtain the
following weak formulation of the problem

1
2

Find (uf,v°) € (K°)* such that (2.1)

L
(0ru®, ) + aas (U5, ) + (A70%, ) +/ (lu® —rv) pdxy = (f%,¢), Ve € K7,
0

L
(O00°, ) + age (05, ) + (AuF, ) + / (I50° + 1) apday = (¢F,0), Vb € K°,
0
(us(x7 O)’ Ve (.13, 0)) = (07 0) s

where
K¢ ={(eH' Q%) :(=0o0n 095 U5},

and
o) = 3 [ @n ()0, ()
Theorem 1. Assume that
(f5,9°) € L2 (0, T, L2 () .
Then, there exists a unique solution (u®,v®) to problem (2.1) such that
(ue,0°) € L2 (0, T, HY(29))?,

(8{(1,6, atvs) S L2 (O, T‘7 LQ(QE))2 .
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Proof.
A) Uniqueness.

Let (u§,v§) and (u§,v5) are two possible solutions. Taking in (2.1) (p,v¢) =
(u§ — us,v§ — vs) (respectively (p,9) = (u§ — ug,v§ —v§)) in the equation relating
to (u§,v§) (respectively (u§,v§)), we find

(Orui, ug — uf) + aas (uf, uy — ug) + A" (v7, up — uf) (2.2)

+ /OL (IJuf —roof) (ug — uf) dy
= (f%,u5 —ui),
(Opus, ul — u3) + aae (ug,ui — uz) + A% (vg,uf — u3) (2.3)
+ /L (IJu§ — rfv2) (uf — us) day
0
= (f%ul —u3),
and

(Opvi, v — v1) + ap= (v],v5 — vf) + A (uf,v3 — o) (2.4)
+ /L (1507 + ruy) (v5 — of) dy

= (;E,US —vi),

(Opv3,v] — v3) + ap= (v3, V] — v3) + A (ug,v] — v3) (2.5)
" /oL (l5v5 + ru3) (v] — v3) day

= (g% v —v3),

we put U = uj — u§, and V° = v§ — 0§, thus the sum of (2.2) with (2.3), and (2.4)
with (2.5) gives

L L
— (OU®,UT) — age (U, UT) — X (VU — lf/ U U dxy + / r*VEUTdz, = 0,
0 0
and
L L
BV, V) — age (V,VF) = N (UF, V) — / Ve Veday — / rSUE VEday = 0.
0 0

Now, adding the two equations above, we find

(O (5) U () + aas (U (s) U (5)) +ags (V" (s), V" (s)) (2.6)
< 2N (VF () UE (s)).
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On the other hand, we have

/0 G (U (3), 0 (8)) ds > pie / 19 () ps ey s,

then, integrating the inequality (2.6) over (0,t), we get
t
(104 ()3 2ey + 1V () F 2y ) + / (bt 14 () ) + 125 1V ()1 e ) s

t
<2 [ (I @) Eaiaey + 1V g .
now, using Gronwall’s lemma, we find
U= (s),V°(s)) = (0,0), Vs €(0,7).

Thus, we obtain the uniqueness of the solution.
B) Existence.
To show the existence of the solution, we use the Faedo-Galerkin approximation.
Let {KZ,} be a family of finite dimensional spaces. It introduces a sequence (wj )
of functions having the following properties:
*ws € Ko, V) =1,..,m.
* The family {w§, ws, ..., w,} is linearly independent.
* The K&, = [w§,ws, ..., ws,| generated by {w§,ws§, ..., ws,} is dense in K¢.
Let (ué,,vs,) = (us, (t), 05, (t)) be an approximate solution such that

m m
U (8) = Y Rjm () w5, 05, (8) = ) Py (8) w5,
j=1 j=1

where R, (t) and Pj,, (t) are determined by the following ordinary differential equa-
tions:

L
(3tufn,w§) + Qg (ufn,wj) + )\E(vfn,wi) + /o (Fus, —rvs,). (wje) dxq (2.7)
= (f&"w;)’ 1 <J <ma

L
(D5, w5) + age (v5,, w5) + A (us,, w5) + /0 (1505, + r°us,) - (w5) das

=(¢°,w5), 1<j<m,

U (2,0) =0,
Um (0) = >~ vjm (0) w; 280 in K€,
=1
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Now, we will establish some estimates independent on m.
The first estimate.

By multiplying the first and the second equation of (2.7) by Rj., (t) and Pj, (t)
respectively, then sum over j from 1 to m, we obtain

L
t Ea af 5 I} - 1= 5 5
@%wm+ammmwvmqma/ﬁ@ ros,) whsdar = (£, u5,)
0
and
L
@@wm+%m@ﬁ»m%%wm+/<m;w%m@mfwﬁ@»
0

by integrating over (0, t) the two equations above, and summing the result, we deduce
that

1 ) 1
3 i (92 (e + 5 llvr (s $)I72 00 ds+ua/Hu )31 (e ) ds

—|—u5/|\v HHl QE)ds—i—ll// s)|? dsclds—i-lg// vS, ()| dwyds
t

< [ >w+/<<@mm@wwnv/w;@wm@Ms
0

0 0

Now, using the fact that

t
/wws |w</wenmmw+/w )220, s,
0

t
/K() |@</m nwm@+/w a0, 4,
0

and

/|; u \w<W/m nwmw+W/m 3 l32(0e s
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we find the following estimate

2
s (NEacaey + 105, <>nL2“F>+—2ﬂal/’nu (5) 3 e 5
+mw/wv mpmqw+af/wu prLmk+2F/Hv (OMigop
2 2
s@+4xy/0m;@mmmﬂ+n@x@hmm)w
0

t t
2 2
2 [ 17 Oy ds+2 [ 167 02 s
0 0
After applying Gronwall’s lemma in the above inequality, we get

£ 2 £ 2 5 2

[t ()22 ey + 105 ()22 (0ey + Ui (20,7, 50 (20 )) (2.8)
£ 2 e 2 e 2

+ v () 207,11 (00)) + 1Um ()220, 7,220,201V (720,720, L1))
<<,

where ¢% is a constant independent on m.
The second estimate.

We multiply the first and the second equation of (2.7) by R}, (1) and P}, (1)
respectively, then sum over j from 1 to m, we have

L
(Opus,, Opus,) + age (us,, Opus,) + A% (v5,, Opus,) + / ([Suy, — rfus,) Opus,dxy
0
= (fsa atufn) s
L
(Opvs,, Orvs,) + age (v, Ovs,) + A° (us,, Owvs,) + / (I5v5, + reus,) Ovr, dy
0
( 8”) ) ’
as [ aae (U5, (5), 045, () ds, [3 [ (u5, (5).0pus, (s)) dards, [i [i (v5,.005,) deids
and fo ags (V5 (s), 0005, (s)) ds are posmve terms, integrating from 0 to ¢, we find

[ 100 )y st [ 1005 OV s+ [ 52 5) 0 5D
+v4<m<»wa@>
g/U()&u@D%+/@()&v(D

—r// ) .05, d:clds—i—r// (Opus, (s)) dzy ds,
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Next, by using Cauchy-Schwarz inequality, trace theorem and Young’s inequality, we
obtain

2
§ 10 eyt + 1 [ 1005 9y 29)
< axe / 105, ()l 2y ds + 4A° / i, (3)]] e s + 4 / 12 () e s

t
#4r50@) [ (10 s + 105 Ol 851 [ 197 Ol

on the other hand, by the estimate (2.8), we have
/ g, ()l eqo.cp ds + / 2, (5) 2 0,20 45
[ Ol s+ [ 1052 ()

< .
So, from (2.9), we deduce that there exists ¢; > 0 which does not depend to m such
that
5 2 5 2 e
[0z, (5)||L2(07T7L2(QE)) + [|0pvr, (5)HL2(0,T,L2(Q€)) <. (2.10)
C) Limit procedure.

From (2.8) and (2.10), we conclude that there exists a subsequence of the sequence

(u8,,vs,), with the same notation, such that

(uS,,v5,) — (u®,v°) weakly in L* (0,7, H' (QE))?7

(Ops,, 01v5,) —  (9pus, dv°) weakly in L2 (0,T, L? (2°)).

Finally, using the arguments in reference [13] and the fact that the space K&, is dense
in K¢, we pass to the limit as m— 0 in (2.7), we find that u® and v° satisfy

L
(O00) + o (0,0) + X% 0) + [ (I =17 (o) dy
0
= (f%¢),Vpe K®,
and
L
(80, 9) + ape (v, ) + No(uF, ) + / (1505, +r°us,) - (1) day
0

= (¢°,%), V¥ € K°,
this imply that

Ot + Age (uf) + A€ = f€,

00° + Age (v°) + XouF = g, } a.e in Q° x (0,7).

Theorem 1 is proved. 0
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3. Asymptotic analysis of the problem

For the asymptotic analysis of the problem (2.1), we use the approach which consists
in transposing the problem initially posed in the domain which depends on a small
parameter ¢ in an equivalent problem posed in the fixed domain which is independent
on €.

3.1. The problem in a fixed domain and some estimates
By introducing the change of variables z = “2, we get the fixed domain
Q={(21,2) ER*>, 0< 21 <L,0<z<h(z1)},
we denote by 9 = 99, UIQ,U03 its boundary, where 91 = {& € 9Q : 20 = h (1)},
892 = ({5171 = 0} @] {xl = L}) X ]O,h (1’1)[ and 893 = ]O,L[
Now, we define the following functions in §2

u® (21, x2,t) = G° (21, 2,t), v° (21, 22,t) = 0° (21, 2, 1) .

Let us assume the following dependence (with respect of £ ) of the data

ajj (w1, ma) = Gy (21,2), 1 <4, <2, (3.1)
ij ((El,.’liz) = ﬂij (1171,2’), 1§Zv]§27
52-]06 (33'1711']2,t) = f(xl?zﬂt)7 5296 ($1,$2,t):§(1’1,2,t),
2\ = 5\, elf = il, ely = Zg, er® =7,
Assuming (3.1), the problem (2.1) leads to the following form
Find (4°,9%) € K, such that (3.2)
/523tﬁ530dx1dz + &2 / a1 (21, 2) (02,0°) Oz, ) dzrdz
Q Q

+e / G2 (21, 2) (0, 4°) (0,0) dxrdz + / Go1 (21, 2) (0,4°) (On, ) dx1dz
Q Q

L L
+/&22 (1, 2) (0,0°) (0,p) dxrdz + )\/ 0% pdridz + 1y / u°.pdry — f/ 0°.pdxy
Q 0 0

Q

:/fgodxldz, Vo € K,
Q



Asymptotic Analysis of Coupled Parabolic Problem 173

/ 2 (8,0°) hdx1dz + €2 / Bi1 (21, 2) (0, %) (0p,10) dadz (3.3)
Q

Q

—1—5/512 (21,2) (0,0%) (0.9) dx1dz + € / 321 (21,2) (0,0%) (O, ) dx1d2
Q

Q

L L
+/322 (1, 2) (0,0°) (8.9) dxldz+5\/ ﬁs.gadxldz+i2/ 175.1/1dx1+f'/ ¢ apday
0 0
Q

Q

= /gwdxldz, Vi € K,

Q

(4° (21, 2,0),0%(x1,2,0)) = (0,0), (3.4)

where

K={CeH"(Q):(=00n092 Ud}.

Now, we will obtain estimates on 4°, ¢, 0;4° and 0;0°. These estimates will be useful
in order for obtaining the convergence results and the limit problem.

Theorem 2. Assume that f¢, g° € L? (0, T, L* (Q°)) and ANR? < min (fia, pig). Then
there exists a constant ¢ independent on € such that

~e12 ~e 12 ~e12 ~e 112
et ||L2(Q) + [led HL2(Q) + [|€0z, @ ||L2(0,T,L2(Q)) +[10:4 HLz(o,T,m(Q)) (3.5)
~c 12 ~c 12 5 2
1021 0%l 22 0,7, £2(0)) + 10:0" 20,7, 202)) + 107 ()220, 220,

2
+ v* (220,17, 12¢0,0)
<c,

ell2 o2
ngat“EHLz’(o,T,LZ(Q)) + HEQatvEHLQ(O,T,LZ(Q)) <ec (3.6)

Proof. Let (u®,v°) be the solution of the problem (1.1) — (1.2). Putting (p,%) =
(u®,v%) in (2.1), leads to

L
(Opu, u®) + age (u¥,u’) + A% (v°,uf) + / (Ifu® —r®v®) wdzy = (f°,uf),
0
and

L
(0%, v%) + age (v°5,0%) + A° (u,v%) + / (I50° + ru®) wodxy = (¢%,0%),
0
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by integrating the two equalities over (0,t¢) and summing the result, we get

t
1
5 (I (5)a(e) + 0% (5)]32(e) ) + / V45 ()220 2 s (3.7)
0

t
+ag / IV (3) 32 e s + 1 / 4 (3) 3,y s+ 5 / o ()0,

t

<//gs\f5 |dxds+// 5)| dads

0

+2/\€// |u® ( s)| dxds.

Now, we estimate the right-hand side of the inequality (3.7). Using the Cauchy-
Schwarz inequality, Poincaré’s inequality

el L2 ey < eh Vol L2 ez » Vo € K7,

and Young’s inequality, we have

_ t
. 2e2h2 .
/ / £2(5) a (o) dads < = / 1% ()12 ey s + (3.8)
0

Mo > 2
b [ 190 )
0

A

and

t

[ 15 0 @ldnds < 2 Ll (9 ds + (39)

0
t
5 [ 1IVes (s HL2(96)2 ds,
0

also, we have

/ [ 107 ) (9)] dods < ¢ / 10 Ny I (Dpary s (10

i / [90° (5) 22 g0 ds + AR / 94 ()220 d.
0
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Injecting the inequalities (3.8), (3.9) and (3.10) in (3.7), we obtain

t
Ha N
I (5) gy + 1o° @)y + (5 = 2382) [ U908 O)aepeds (311)
0
t t
’LL A —
+ (52 = 28) [ 190 )y ds +15 [ 10 6)32g0.00 05
0 0
t
2
415 [ 17 g0 9 ds
0
2¢2

2 |

2

< Z [ Ol ds +
0

_ t
2€2h2 / 2
g (s) HLz(Qe) ds,
Hs )

as

2 e12 —11| f 2
1 3a @y =7 | ]

2,212 =152
L2()’ e g ||L2(Qs) =¢ HQHLQ(Q)7

we multiply the inequality (3.11) by e. Then we obtain

t
2 2 Mo N 2
£ Iu® () 2ae) + € 107 (9)Fagae) + (5 — 23R%) / e[ VU () 2oy ds (3.12)

0
t t

KB 37 2 7 2
+ (B = 202) [0 @ s ds+ i [ 10 @Fagoup s
0 0

t
7 2
4l [ 10F O ago i ds
0

< 4,

2

where A = 2%2 Hf(t)‘

on e.

h2 |~ 2 . .
L (0r12() + % 9 ()| 72(0,7,22(c)) 18 @ constant independent

From (3.12), we deduce (3.5).
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To show the estimate (3.6), we choose ¢ = 9,4° in (3.2), we find

/ 20,050y dary dz + & / inr (21, 2) (00, 0) (9, Oyit®) dandz  (3.13)
Q Q

+ € / &12 (.Tl, Z) (8;51125) (82&115) d.Z‘le

+€/EL21 :vl,z) (8 ﬁg) (8118,5&5) dCUle

Q
+/ doo (21, 2) (0,4°) (8z8ta5)dx1dz+5\/ o°.0y 0 dwydz
o Q
L
/ u®.edutdry 71:/ 0°.0yu°dxy
0 0
:/f.é)tﬁsdxldz,
Q

integrating this equalit over (0,t), we deduce that

/Hs@tu HLQ(Q ds—)\// Op0° s) dr1dzds

t
L
< // ).0¢t° (8) dxidzds — /\/ 4 (t) derdz + f/ 0% (t) .0pu° (t) dxy,
0
0

this leads to

t
/Hs@tﬁa S)H2LQ(Q) ds — A //8t s) dxidzds

< é / / (edyir ( ))dxldzds+§ /0 ’ (6° () . (0% (1)) doy
Q

>

+)\/Q ©(t) .4 (t) dz1dz,
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by using Cauchy-Schwarz inequality, trace theorem and Young’s inequality, we obtain

t
/ le0ei (s)[172 () ds — / / Ay0° ( (s) dzydzds (3.14)

4
7
0

F A (5)2a() + 57 (Cla) / 6% (5)22 0.1 s + = / 1684 () ey s

f

1 e 2 3 110E 2
L derf/HEatU ($)Iz2 ()2 ds + A 1107 ()12

On the other hand, we choose ¢ = 9;9° in (3.3) and we use the same techniques as
before that we applied to equality (3.13), we find the following inequality

/Hs@tv ||L2(Q) ds+)\//6tv (s) dx1dzds (3.15)

IN

t
4 .
72/ g ||L2 Q) dS + /HE@W )||L2 Q)Q dS
0

t

4 2 N 2 1 N 2
§T2 (O(Q)) / ||u5 (S)HLQ(]O;L[) dS + 1 / ||€8t1;5 (S)||L2(Q)2 dS.
0 0

+

Now, we add the two inequalities (3.14) and (3.15), then we multiply the result by
€2, Then we get

¢ t
/||€23tff )220 d‘9+/||523ﬂ75 Ol P
0 0

gso/Hf(s)

~ 2 ~e ~E
482 (Co)” | [ 18 g ds + [ 167 9o ds |
0 0

t
2
~ 2 N ~g (12 N ~e(12
L) d5+8/||9(5)HL2(Q) ds + A|et[72(q) + Alet 72 (q)
0

using the fact that

12 o2 o2 o2
1€0° 122y + 1€8° 12 0y + 11851 220,222 q0s2y) T 119722 (0,7, L2102y < €

we find, that there is a constant ¢ independent on ¢, such that

|e2opic

L?(OTL2 an T [e*0p0° L?(OTL2(Q)) =
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3.2. Study of the limit problem as ¢ — 0

In this section we give the system satisfied by the limit of the sequences (4, ¢¢) on Q2
and the two equations describing the boundary conditions on ]0, L[, for this purpose
we introduce the Banach space

:{(eLQ(Q):ggGLQ(Q),C:OOnaﬁl},
ac|®

1
2
et = (W + | 5 .
V. L2(Q) 02 L2

We recall that the Poincaré inequality in the fixed domain € gives

|2

with norm

,forall (e V..

€l 2y <
L2(Q?) — 9z L2(@)

Theorem 3. Under the hypotheses of the Theorem 2, there exists u*,v* € L? (0,T;V,)
such that

(05,0°) — (u*,v*)  weakly in L? (0,T;V.)?, (3.16)

(60,,0°,€0,,9°) — (0,0) weakly in L* (0,T; L* (Q))z, (3.17)
(€0.0°,£0.0°) — (0,0) weakly in L* (0,T; L (2))°,

(20,15, €204i°) — (0,0)  weakly in L? (0,T; L (2))°. (3.18)

Where (u*,v*) is the weak solution to the limit problem

f% {&22 (w1,2) W} + \v* (21, 2,t) = f (21,2,1),
a.ein Qx(0,T),
_% |:322 (.’IJl,Z) W} + S\U* (.1'17Z,t) = g (.T],Z,t) )
(3.19)
*6‘22 (.Il,O) 621['< (I1,07t) + llu* (Ila O) t) — fo* (‘r1707t) = 07
a.eon)0, L[x(0,T),
— B2 (x1,0) O, v* (21,0,t) + l1v* (21,0,t) + Fu* (z1,0,t) =0,

(u*(z,0),v"(z,0)) = (0,0) .

(3.20)

Proof.
By the Theorem 2, there exists a constant ¢ independent of € such that

/na (5) 2oy ls < /na (5 2oy ds <
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Using these estimates with the Poincaré inequality in the domain €2, we get

N 2
[[a° (5)”L2(07T7V2) <c

and

A 2
[0 (S)HLQ(O,TMZ) <c

So (4¢,0). is bounded in L? (O,T,VZ)Q, which implies the existence of an ele-
ment (u*,v*) in L2 (0,T,V,)* such that (4, 0°), converges weakly to (u*,v*) in
L2(0,T,V,)?, thus we obtain (3.16). For (3.17) through (3.5) and (3.16). As (a®,0°%),
converges weakly to (u*,v*) in L2 (0, T, Vz)2 and (s2ata6,s2at@€) converges weakly
to (x,¢) in L? (0,7, L? (Q))Q, we deduce (x, ¢) = (0,0).

Now, by passage to the limit when e tends to zero in the variational problem
(3.3) — (3.4), and using the convergence results, we deduce

L
/dgg (21, 2) O,u* 0, pdx1dz + )\/v*godxldz +/ (llu* — fv*) wdxy (3.21)
0
Q Q

:/f.godwldz, Vo € K,
Q

and

R—

L
322 (1, 2) 0,v*000dzdz + A / w*pdaidz + / (l}v* + f) day (3.22)
0
Q

g.vdxidz, Yy € K,

O —

we choice ¢ and v in H} (2), then using Green’s formula, we obtain

_/82 [z (21, 2) O, u’] npdacldz—i-j\/v*gpdxldz = /f.(pd:cldz,
Q Q Q

—/82 [322 (21, 2) 6zu*] z/deldz—&—;\/u*wda:ldz = /g.wdxldz,
Q Q

Q

thus

—0, [Gg2 (w1, 2) O.u* (w1, 2,8)] + A* (21,2, 1) = f (21, 2, 1)
—0, {522 (21, 2) O,v* (1, z,t)] + M (21, 2,t) = g (21, 2, 1)

} in 71 (Q), (3.23)

as f,g € L? (0,73 L (2)), then (3.23), is valid a.e in Q x (0,T).
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Now, let’s go back to the two formulas (3.21) and (3.22), using Green’s formula
and the fact that (¢,v) = (0,0) on 921 NNy, we deduce

L
/ (—@ [z (21, 2) Bou*] 4+ ™ — f) pdridz — / dao (21, 0) O,u” pdxy
0
Q

L L
+l1/ u*.pdry —f/ v*.oday
0 0
=0, VpeK,
and

/ (—82 [ng (21,2) 8Zu*] + A — g) Ydri1dz — /OL bas (21,0) 0, v*day

Q
L L
+ 12/ v .pdry + f/ u* . apdxy
0 0
=0, Ve K,
this leads to

fOL — @ (21, 0) Ou* + lyu* — fv*) odr, =0,

R . Y (o, D(]0,L]?,
fOL —622 (56‘1, 0) 821)* + 121}* — fu*) wdlj = U, ((p w) © (] D

by the density of D (]0, L))* in L2 (]0, L), we get (3.20). O

z1,2 x1,2)€

Theorem 4. Assume that min( Hli)nﬂ(élgg (a:l,z)),( min (Bgz (xl,z))> > 2)\.
€

Then the weak solution (u*,v*) of the limit problem is unique and satisfies the follow-
ing two weak formulas

/ ( //a22 x1,6) Ou™ (x1,6,t dqdy—|—/\/// (z1,5,t) dsdndy

(3.24)

h h -
+ (;“)/ ans (21,<) Ot” (21, 6,1) ds + F

/ / (z1,5,t) dgdn) &) (1) dxy

=0, V&, € H' (|0, L]),
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and

/ ( //622 x1,5) Ocv” (xl,gtdgdy+/\/ // (z1,6,t) dsdndy

(3.25)

h
+ M/ Bz (21,6) 00" (21,5,8) dC + C

/ / (z1,6,t) dgdn) & (21) day

=0, V&, € H*(]0,L[),

with

F

hry h h o prn
/ / / f(x1,6,t) dsdndy — 7(;:1) / / f(z1,5,t) dsdn,
o Jo Jo o Jo
h pry rm h h  prn
/ / / g (x1,6,t) dsdndy — 7(;?1) / / g (x1,6,t) dsdn.
o Jo Jo o Jo

Proof. To prove the uniqueness result, we suppose that there exist two solutions
(u*,v*) and (u*™*,v**) of the variational problem (3.21) — (3.22), we have

G

L
/0722 (21, 2) O,u” 0, pdx1dz + )\/v*godxldz +/ (llu* — PU*) (pdxy (3.26)
0
Q Q

= /f.goda:ldzN(p e K,

L
/dgg (21, 2) O,u™ 0, pdx1dz + )\/v**gadxldz +/ (llu** - f’v**) pdxy (3.27)
Q Q 0
= /f.godxldzNap e K,

and

L
322 (21, 2) 0,v*00dx1dz + A / uw*pdridz + / ([Q'U* + fu*) Apdxy (3.28)

Q

O—

Gabdardz, W € K,

Il
D
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O

L
Bao (21,2) 0,00 pdx1dz + S\/U**wdxldz —I—/ (l}v** + fu**) apdxy (3.29)
Q 0

= [ g.dr1dz, VY € K.

)

By subtracting the equations (3.26) with (3.27) and (3.28) with (3.29), then we take
p=u*—u*" and ¢ = v* —v**, we get

/dzg (21,2) |0.u* — .u**|? daydz + 5\/ (v* —0v™) (u* — ™) da1dz (3.30)
Q Q

L L
+ll/ lu* — u™*]? day 772/ (v* —v™) . (u —u*™) dxy
0 0
and

/ng (21, 2) |0.0* — 0.0 > daydz + 5\/ (u* —u™) (v* —v*) dx1dz (3.31)
Q Q

L L
+ 10 / [v* — v**|* day + f/ (u* —u™). (v —v™)dry
0 0

=0.

Now, by summing the two equations and applying Young’s and Poincare’s inequalities,
we conclude

(min (Ga2) — 2:\> lu* = w* oo zvy + (min (Bﬂ) - 25\) lo* = o™ 220,70y < 0,

then, we obtain
(’U,*, U*) _ (U**,’U**) )

For prove the two weak formulas, we integrate twice the first and the second equation
of (3.19) between 0 and z, we obtain

z 2
- / Q29 (3317 () a&‘U* (xla Ss t) d( + %OQQ ('rlv 0) 82“’* (.’El, 07 t) (332)

0
~ z ,'7
+/\//v*(x1,g,t)dgd77
o Jo

z o
= / / f($17§7t) d§d7]7
0 Jo
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and

z 2
_ / P22 (x1,6) Ov™ (x1,¢,1) dC + %ﬂgg (z1,0) 0,v] (x1,0,1) (3.33)

+A/ / (w1,¢,t) dedn
:/ / 3 (21, ) ded,
0 0

in particular for z = h (z1), we obtain

h(z1)?
2

h
— / oo (x1,¢) Ocu™ (x1,5,t) ds + agz (21,0) Ou; (21,0,1)

+/\/ / (z1,5,t) dsdn
:/ / .]E(xlagat) dngIa
0 0

and

h 2
(21) 522 (331,0) azv;,'k (x1a07t)

h
- / Bas (21,<) Dev* (1,6, 8) dC +

—|—)\/ / (z1,5,t) dsdn
o Jo
:/ / g(xhgat) d§d77

o Jo

Thus, by integrating (3.32) and (3.33) between 0 and h (z1), we get (3.24) and (3.25).
O
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