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1. Introduction

In this paper we utilize the nonconformable fractional derivative introduced in [1] and
[4] to study the asymptotic behavior of solutions to very general nonlinear fractional
differential equations that are generalizations of Emden-Fowler and other types of
ordinary (integer order) equations. One advantage of using this type of fractional
derivative, which we will denote by N , is that if a function is α-order, α ∈ (0, 1],
differentiable at a point t0 ∈ (0,∞), then it is continuous at that point (see [1,
Theorem 2.2]). Also, this fractional derivative obeys product and quotient rules that
mimic those for ordinary (integer order) derivatives (see [1, Theorem 2.3]). But
probably its most important feature is that it satitfies a chain rule like the one for
integer order derivatives (see Lemma 2.5 below). This type of fractional derivative is
well described in the paper [1]. We also obtain a Gronwall type inequality for this
kind of fractional derivative.
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2. Preliminaries and Basic Concepts

We begin with the notion of the nonconformable fractional derivative.

Definition 2.1. ([1, Definition 2.1], [5, Definition 1]) Let f : [0,∞) → R. The
nonconformable fractional derivative of f of order α ∈ (0, 1) is defined by

(Nαf)(t) = lim
ϵ→0

f(t+ ϵet
−α

)− f(t)

ϵ

for all t > 0.

Remark. If (Nαf)(t) exists in some (0, a) and limt→0+(N
αf)(t) exists, then we

define (Nαf)(0) = limt→0+(N
αf)(t).

Corresponding to the nonconformable fractional derivative, we have the noncon-
formable fractional integral.

Definition 2.2. ([5, Definition 2]) Let f : [0,∞) → R. The nonconformable fractional
integral of f of order α ∈ (0, 1) is defined by

(NJα
t0f)(t) =

∫ t

t0

f(s)

es−α ds.

In view of Definitions 2.1 and 2.2 it is obvious that the following lemma is needed.

Lemma 2.3. ([5, Theorem 3]) If f is Nα–differentiable on (t0,∞) with α ∈ (0, 1],
then for t > t0:

(a) If f is differentiable, NJα
t0(N

αf)(t) = f(t)− f(t0).

(b) Nα(NJα
t0f)(t) = f(t).

For convenience, we next give some properties of the nonconformable fractional
derivative.

Lemma 2.4. Let f and g be Nα differentiable, α ∈ (0, 1], at a point t > 0; then:

(1) Nα(c) = 0 for any constant c ∈ R.

(2) Nα(fg)(t) = f(t)(Nαg)(t) + g(t)(Nαf)(t).

(3) Nα
(

f
g

)
=

g(t)(Nαf)(t)− f(t)(Nαg)(t)

g2(t)
.

(4) If f is differentiable (in the ordinary sense), then (Nαf)(t) = et
−α

f ′(t).

Proof. This is parts (c)–(f) of Theorem 2.3 in [1].

Remark. ([1, p. 91]) If (Nαf)(t) exists for t > 0, then f is differentiable (in the
ordinary sense) at t, and

f ′(t) = e−t−α

(Nαf)(t).
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As mentioned earlier, a very important advantage that the nonconformable frac-
tional derivative has over other fractional derivatives is the existence of a chain rule
that mimics the one for ordinary (integer valued) derivatives. We state it here as the
following lemma; its proof can be found in [1, Theorem 3.1].

Lemma 2.5. Let α ∈ (0, 1], g be Nα differentiable at t > 0, and f be differentiable
at g(t). Then

Nα(f ◦ g)(t) = f ′(g(t))(Nαg)(t).

In the study of continuability, boundedness, stability, and other asymptotic prop-
erties of solutions of nonlinear differential equations, the kinetic energy of the system
often appears as an integral such as F (x) =

∫ x

0
f(s)ds. It then becomes necessary to

differentiate this quantity. By applying the above chain rule, we obtain,

NαF (x) = f(x(t))(Nαx)(t).

Due to its importance, we formulate this as the following corollary.

Corollary 2.6. Let f : R → R and define F (x) =
∫ x

0
f(s)ds. Then

(NαF )(x) = f(x(t))(Nαx)(t).

Remark. An intermediate value theorem for nonconformable derivatives can be
found in [3, Theorem 4] framed in a multivariate setting, as can a multivariate chain
rule [3, Theorem 8]. Similarly, there is an implicit function theorem [3, Theorem 12].

We conclude this section with a Gronwall type inequality for nonconformable
fractional derivatives. Here, we let R = (−∞,∞) and R+ = [0,∞).

Lemma 2.7. Let c ∈ R+ and a, u : R → R+. If

u(t) ≤ c+ (NJα
t0au)(t), (2.1)

then
u(t) ≤ c exp{(NJα

t0a)(t)}. (2.2)

Proof. If we let K(t) denote the right hand side of (2.1), then it is easy to see that
(2.1) can be rewritten as

NαK(t)

K(t)
≤ a(t).

This implies
K ′(t)

K(t)
≤ e−t−α

a(t)

by Remark 2. Integrating, we have

lnK(t) ≤ lnK(t0) +

∫ t

t0

e−s−α

a(s)ds,
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so

K(t) ≤ K(t0) exp

∫ t

t0

e−s−α

a(s)ds.

Hence,

u(t) ≤ K(t) ≤ c exp{(NJα
t0a)(t)},

which proves (2.2).

3. Main Results

Consider the perturbed nonlinear differential equation with nonconformable fractional
derivatives

Nα(a(t)Nαx) + b(t, x,Nαx) + q(t)f(x)g(Nαx) = e(t, x,Nαx), (E)

where a, q : R+ → R+, b, e : R+ × R × R → R, and f , g : R → R are continuous
functions with g(v) > 0 for v ∈ R.

Special cases of the left hand side of this equation include the Emden–Fowler
equation (b ≡ 0 and g ≡ 1), the Liénard equation (a ≡ 1 ≡ q, b(t, u, v) = b(u)v,
g ≡ 1), and the Rayleigh equation (a ≡ 1 ≡ q, b(t, u, v) = b(v), g ≡ 1). We will make
use of a variety of different conditions on the coefficient functions including:

|e(t, u, v)| ≤ r(t), (3.1)

where r : R+ → R is a continuous function;

b(t, u, v)v ≥ 0, (3.2)

F (x) =

∫ x

0

f(s)ds → ∞ as |x| → ∞, (3.3)

|v|
g(v)

≤ m+ nG(v), (3.4)

where m and n are nonnegative constants and G(v) =

∫ v

0

sds

g(s)
,

v2

g(v)
≤ MG(v) for all v, (3.5)

where M is a positive constant;

Nαa(t) ≥ 0, (3.6)

and

a(t) ≤ A, (3.7)

where A > 0 is a constant.
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For any continuous function d : [0,∞) → R, we set (Nαd)(t)+ = max{(Nαd)(t), 0}
and Nαd(t)− = max{−(Nαd)(t), 0} which means that (Nαd)(t) = (Nαd)(t)+ −
(Nαd)(t)−. Also, if we let

b(t) = exp

{
−
(

NJα
t0

Nαd(t)−
d(t)

)
(t)

}
and c(t) = exp

{(
NJα

t0

Nαd(t)+
d(t)

)
(t)

}
then d(t) = d(t0)b(t)c(t). Moreover, it is not hard to show that if

NJα
t0

(
Nαd(t)−

d(t)

)
(∞) < ∞, (3.8)

then d(t) is bounded from below away from 0, and if

NJα
t0

(
Nαd(t)+

d(t)

)
(∞) < ∞,

then then d(t) is bounded from above.
In view of the above discussion, we list the following possible assumptions to be

used in this paper:

NJα
t0

(
Nαa(s)+

a(s)

)
(∞) < ∞, (3.9)

NJα
t0

(
Nαa(s)−

a(s)

)
(∞) < ∞, (3.10)

NJα
t0

(
Nαq(s)+

q(s)

)
(∞) < ∞, (3.11)

NJα
t0

(
Nαq(s)−

q(s)

)
(∞) < ∞. (3.12)

For convenience, we will write equation (E) as the system{
Nαx = y,

Nαy = [−(Nα(a(t))y − b(t, x, y)− q(t)f(x)g(y) + e(t, x, y)]/a(t).
(S1)

Note: As long as there is no ambiguity to the meaning, in what follows we will
write

NJα
t0M(t) to mean (NJα

t0M)(t).

It is important to know that solutions to our problem can be defined for all time in
the future, i.e., they are continuable. One such result is given in the following theorem.
By interchanging some of the conditions, it is possible to obtain some variations of it.

Theorem 3.1. Assume that F (x) is bounded from below and conditions (3.1), (3.2),
(3.4) and (3.6) hold. If G(v) → ∞ as |v| → ∞, then all solutions of system (S1) and
hence equation (E) are defined for all t > 0.
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Proof. Let x(t) be a solution of equation (E) and (x(t), y(t)) be the corresponding
solution of system (S1), and assume that the solution is not continuable, i.e.,

lim sup
t→T−

[|x(t)|+ |y(t)|] = +∞

for some 0 < T < ∞ (that is, the solution has finite escape time).

Now F (x(t)) ≥ −K for some constant K ≥ 0, so we define

V (t) = V (t, x(t), y(t)) = [F (x) +K]/a(t) +G(y)/q(t), (3.13)

where we have suppressed some of the dependence on t.

Then, by Lemmas 2.4 and 2.5 and Corollary 2.6,

NαV (t) = −[F (x) +K]Nαa(t)/a2(t) + f(x)Nαx/a(t)−G(y)Nαq(t)/q2(t)

+
y

g(y)q(t)
Nαy

≤ −G(y)Nαq(t)/q2(t) +
e(t, x, y)y

g(y)q(t)a(t)

≤ −G(y)Nαq(t)/q2(t) +
r(t)

q(t)a(t)

(
m+ nG(y)

)
.

If we now integrate NαV (t) from t0 to T , we see that

G(y(t))

q(t)
≤V (t)≤NJα

t0

(
G(y(t))

q(t)

[
Nαq(t)−/q(t) +

nr(t)

a(t)

])
+NJα

t0

(
mr(t)

a(t)q(t)

)
+V (t0),

(3.14)
or

G(y(t))/q(t) ≤ C + NJα
t0

{
G(y(t))

q(t)

[
Nαq(t)−/q(t) +

nr(t)

a(t)

]}
for some constant C > 0. By Lemma 2.7 we see that G(y(t))/q(t) and hence G(y(t))
is bounded on (0, T ). This implies y(t) is bounded on (0, T ) and an integration shows
that x(t) is bounded there as well. Therefore, the solution (x(t), y(t)) of (S1) does
not have finite escape time, and this proves the theorem.

It is possible to formulate alternate versions of Theorem 3.1, for example, if
b(t, u, v) ≡ 0, then obviously condition (3.2) is not needed; if e(t, u, v) ≡ 0, then (3.1)
and (3.4) are not needed; if a(t) ≡ 1, (3.6) is not needed; and (3.6) can be dropped
if we add condition (3.5). We leave the formulation and proofs of such results to the
reader.

Based on Theorem 3.1 and its proof, we can formulate a number of different
boundedness results. As an example, we have the following one. We will need the
condition

NJα
t0

( r
a

)
(∞) < ∞. (3.15)
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Theorem 3.2. If conditions (3.1)–(3.4), (3.6), (3.7), (3.12), and (3.15) hold, then
all solutions of equation (E) are bounded. If in addition, q(t) ≤ q2 < ∞ and

G(v) → ∞ as |v| → ∞, (3.16)

then all solutions of system (S1) are bounded.

Proof. First observe that condition (3.3) ensures that F (x) is bounded from below.
Then proceeding as in the proof of Theorem 3.1, we obtain (3.14) and so

V (t) ≤ NJα
t0

{
V (t)

[
Nαq(t)−/q(t) +

nr(t)

a(t)

]}
+ NJα

t0

{
mr(t)

a(t)q(t)

}
+ V (t0).

An application of Gronwall’s inequality (Lemma 2.7) and conditions (3.8) and (3.15)
show that V (t) is bounded. Hence, [F (x)+K]/a(t) is bounded, and so x(t) is bounded
by (3.3) and (3.7).

Now V (t) bounded implies G(y(t))
q(t) is bounded, and the additional hypotheses imply

that y(t) is bounded. This completes the proof of the theorem.

In order to show the versatility of the nonconformable fractional derivative, let us
consider the special case of equation (E)

Nα(Nαx) + b(x)Nαx+ f(x) = 0, (L)

i.e., the fractional Liènard equation, which we will write as the system{
Nαx = y −B(x)

Nαy = −f(x)
(S2)

where B(x) = NJα
t0b(x). Define

W (t) = W (t, x(t), y(t)) =
y2(t)

2
+ F (x).

Then along solutions of system (S2), we have

NαW (t) = yNαy + f(x)Nαx = −yf(x) + f(x)(y −B(x)) = −f(x)B(x).

Condition (3.2) implies xB(x) ≥ 0, so if xf(x) ≥ 0, we have NαW (t) ≤ 0. Thus,
W (t) is decreasing along solutions of (S2). Standard Lyapunov stability theorems
imply that the zero solution of (S2) is stable. In addition, if F (x) → ∞ as |x| → ∞,
then all solutions of (S2) are bounded.

We indicated earlier that variations of Theorem 3.1 can be obtained by swapping
some of the hypotheses. This is also the case for the boundedness result in Theorem
3.2. One such result is contained in the following theorem.
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Theorem 3.3. In addition to conditions (3.2), (3.3), (3.5), (3.7), (3.10), and (3.12),
assume that

|e(t, x, y)| ≤ r(t)a(t)

q(t)
(3.17)

and

NJα
t0

(
r

q

)
(∞) < ∞. (3.18)

Then all solutions of equation (E) are bounded. If, in addition, q(t) ≤ q2 < ∞ and
(3.16) holds, then all solutions of system (S1) are bounded.

Proof. Since the proof will proceed along the same lines as that of Theorem 3.2, let
us consider the terms arising from the differentiation of (3.13). First, we see that

−[F (x) +K]Nαa(t)/a2(t) ≤ V (t)Nαa(t)−/a(t)

and

−G(y)Nαq(t)/q2(t) ≤ V (t)Nαq(t)−/q(t).

Also,

y

g(y)q(t)
[−yNαa(t)] ≤ +

MG(y)

q(t)

Nαa(t)−
a(t)

≤ MV (t)
Nαa(t)−

a(t)
.

Now if |y| ≤ 1, then |y|
g(y) ≤ M1 for some M1 > 0, and if |y| ≥ 1, then |y|/g(y) ≤

|y|2/g(y), so |y|
g(y) ≤ M1 + |y|2/g(y) for all y. In view of condition (3.5), it is easy to

see that |y|
g(y) ≤ M1+MG(y) for all y. Also, (3.12) implies that q(t) ≥ q1 > 0. Hence,

by (3.17),

ye(t, x, y)

g(y)q(t)a(t)
≤ (M1 +MG(y))

r(t)

q(t)
≤

(
M1

q1
+

MG(y)

q(t)

)
r(t)

q(t)
.

We then have

NαV (t) ≤ V (t)

{
(1 +M)Nαa(t)−/a(t) +Nαq(t)−/q(t) +M

r(t)

q(t)

}
+

M1

q1

r(t)

q(t)
.

Applying our Gronwall type inequality and the hypotheses easily completes the proof.

Let us consider another Lyapunov (energy) type function,

W1(t) = W1(t, x(t), y(t)) = q(t)[F (x) +K]/a(t) +G(y). (3.19)
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Then,

NαW1(t) ≤ W1(t)
Nα

(
q(t)
a(t)

)
q(t)
a(t)

+
Nαa(t)−

a(t)

(
y2

g(y)

)
+

e(t, x, y)y

a(t)g(y)

≤ W1(t)

Nα
(

q(t)
a(t)

)
q(t)
a(t)

+M
Nαa(t)−

a(t)

+ (M1 +MG(y))
r(t)

a(t)

= W1(t)

Nα
(

q(t)
a(t)

)
q(t)
a(t)

+M
Nαa(t)−

a(t)
+M

r(t)

a(t)

+M1
r(t)

a(t)
.

Based on the above calculations, we can formulate the following result.

Theorem 3.4. In addition to conditions (3.1)–(3.3), (3.5), and (3.15), assume that

NJα
t0

Nα
(

q(t)
a(t)

)
q(t)
a(t)

 (∞) < ∞ (3.20)

and
q(t)

a(t)
≥ B1 > 0 (3.21)

for some constant B1. Then all solutions of equation (E) are bounded. If, in addition,
q(t) ≤ q2 < ∞ and (3.16) holds, then all solutions of system (S1) are bounded.

For our next boundedness theorem, we modify the Lyapunov (energy) functions we
have been using and see that this leads to a different set of conditions to be satisfied.
We begin by defining

v(t) = exp

{
NJα

t0

(
Nαq(t)−

q(t)

)
(t)

}
and w(t) = exp

{
NJα

t0

(
Nαa(t)−

a(t)

)
(t)

}
and note that v(t) ≤ 1 and w(t) ≤ 1.

Theorem 3.5. In addition to conditions (3.1)–(3.3), (3.5), (3.7), (3.10), (3.12), and
(3.15), assume that

y2/g(y) ≤ N1 for all y (3.22)

and

NJα
t0

(
r

aq

)
(∞) < ∞. (3.23)

Then all solutions of equation (E) are bounded. If, in addition, If, in addition,
q(t) ≤ q2 < ∞ and (3.16) holds, then all solutions of system (S1) are bounded.
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Proof. Define

W2(t) = W2(t, x(t), y(t)) = v(t)w(t) {[F (x) +K]/a(t) +G(y)/q(t)} . (3.24)

Then,

NαW2(t) ≤ v(t)w(t)

{
[F (x) +K]

Nαa(t)−
a2(t)

+ f(x)y/a(t) +
y

q(t)g(y)
Nαy

−G(y)
Nαq(t)−
q2(t)

+
(
[F (x) +K]/a(t)+G(y)/q(t)

)(Nαq(t)−
q(t)

+
Nαa(t)−

a(t)

)}
.

Condition (3.12) implies q(t) ≥ q1 > 0 and v(t) ≥ v1 > 0, and (3.10) implies
a(t) ≥ a1 > 0 and w(t) ≥ w1 > 0. We also see that |y|/g(y) is bounded for |y| ≤ 1
and |y|/g(y) ≤ |y|2/g(y) for |y| > 1, so from condition (3.22), |y|/g(y) ≤ N2 for all y
and some N2 > 0. Hence,

NαW2(t)≤W2(t)

[
Nαa(t)−

a(t)
+
Nαq(t)−

q(t)
+

1

v1w1

(
Nαa(t)−

a(t)
+
Nαq(t)−

q(t)
+
N2

q1

Nαa(t)−
a(t)

)]
+ v(t)w(t)

yr(t)

g(y)a(t)q(t)
.

Therefore,

NαW2(t)≤W2(t)

[
Nαa(t)−

a(t)
+
Nαq(t)−

q(t)
+

1

v1w1

(
Nαa(t)−

a(t)
+
Nαq(t)−

q(t)
+
N2

q1

Nαa(t)−
a(t)

)]
+

N2r(t)

a(t)q(t)
.

The remainder of the proof follows as before with an application of the Gronwall
inequality and the conditions of the theorem.

We conclude this section with the following observation. Notice that conditions
(3.15), (3.18), and (3.23) do not require that the perturbation term e be small, even
in the case where (3.1) holds. Many existing results on boundedness in the literature,
even for those not involving fractional derivatives, require

NJα
t0(r)(∞) < ∞.

This is not the case with Theorems 3.2–3.5 in this paper.

4. Asymptotic Properties of Solutions

The publication of the paper by Hammett [2] in 1971 generated a great deal of interest
in obtaining sufficient conditions for ensuring that nonoscillatory solutions x(t) of
various differential equations satisfy lim inft→∞ |x(t)| = 0, and this interest continues
to the present day. For the purposes of our discussion here, we classify solutions of
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equation (E) as follows. A solution of equation (E) is said to be nonoscillatory if for
any t0 > 0 there exists t1 > t0 such that x(t) ̸= 0 for t ≥ t1. A solution of equation
(E) is said to be oscillatory if for any t0 > 0 there exist t1 > t0 and t2 > t0, with
x(t1) > 0 and x(t2) < 0. A solution will be said to be a Z-type solution if it has
arbitrarily large zeros but is eventually nonnegative or nonpositive. It turns out that
asymptotic properties of nonoscillatory solutions often hold for the Z-type solutions
as well.

We begin with two results that give sufficient conditions for bounded nonoscillatory
and Z-type solutions to satisfy lim inft→∞ |x(t)| = 0. This is followed by four theorems
ensuring that all solutions of equation (E) converge to zero.

In what follows we will assume that

xf(x) > 0 if x ̸= 0 (4.1)

and that f(x) is bounded away from 0 if x is bounded away from 0.

This means that the constant K appearing in the Lyapunov type functions (3.13),
(3.19), and (3.24) can be chosen to be 0. In addition, we will use the conditions:

if u is bounded, there exists a continuous function k1 : R+ → R+ such that

|b(t, u, v)| ≤ k1(t)g(v), (4.2)

g(v) ≥ C for some constant C > 0, (4.3)

NJα
t0(q)(∞) = ∞, (4.4)

k1(t)

q(t)
→ 0 and

r(t)

q(t)
→ 0 as t → ∞, (4.5)

NJα
t0

(
1

a

)
(∞) = ∞, (4.6)

a(t)k1(t) → 0 and a(t)r(t) → 0 as t → ∞. (4.7)

Theorem 4.1. Assume conditions (3.1) and (4.1)–(4.6) hold. If x(t) is a bounded
nonoscillatory or Z-type solution of (E), then lim inft→∞ |x(t)| = 0.

Proof. If x(t) is a Z-type solution, the conclusion obviously holds, so let x(t) is a
bounded nonoscillatory solution of (E), say 0 < x(t) < c1 for t ≥ t0 > 0 and some
c1 > 0. The proof in case x(t) is eventually negative is similar. If lim inft→∞ x(t) ̸= 0,
then there exists t1 ≥ t0 and c2 > 0 so that x(t) ≥ c2 for t ≥ t1. Thus,
f(x(t)) > c3 > 0 for t ≥ t1 for some c3 by (4.1).

From equation (E) we have

Nα(a(t)Nαx)/g(Nαx) ≤ −b(t, x,Nαx)/g(Nαx)− q(t)f(x) + e(t, x,Nαx)g(Nαx)

≤ k1(t)− q(t)c3 + r(t)/C

≤ q(t)[k1(t)/q(t)− c3 + r(t)/q(t)].
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Since k1(t)/q(t) → 0 and r(t)/q(t) → 0 as t → ∞, we can choose t2 > t1 such that

Nα(a(t)Nαx)/g(Nαx) ≤ −(c3/3)q(t)

for t ≥ t2.
Integrating and applying condition (4.4) shows that a(t)Nαx is eventually nega-

tive, and this fact together with condition (4.6) shows that x(t) is eventually negative,
which is a contradiction. Therefore, lim inft→∞ x(t) = 0.

We also have the companion result.

Theorem 4.2. Assume that conditions (3.1), (4.1)–(4.3), (4.6), and (4.7) hold, and
a(t)q(t) ≥ B2 for some B2 > 0. If x(t) is a bounded nonoscillatory or Z-type solution
of (E), then lim inft→∞ |x(t)| = 0.

Proof. Proceeding as in the proof of Lemma 4.1, we arrive at

Nα(a(t)Nαx)/g(Nαx) ≤ k1(t)− q(t)c3 + r(t)/C

≤ 1

a(t)
[a(t)k1(t)− a(t)q(t)c3 + a(t)r(t)/C].

Condition (4.7) implies there exits T > 0 such that

Nα(a(t)Nαx)/g(Nαx) ≤ B2c3
2

for t ≥ T . The remainder of the proof is similar to that of Theorem 4.1

Our first theorem guaranteeing that all solutions converge to zero is built upon
Theorem 3.2.

Theorem 4.3. If conditions (3.1)–(3.4), (3.6), (3.7), (3.12), and (3.15) hold, then
every solution of (E) converges to zero as t → ∞.

Proof. Let x(t) be solution of (E). By Theorem 3.2, x(t) is bounded. Define V (t)
as in the proof of Theorem 3.2 (see (3.13) in the proof of Theorem 3.1) taking (4.1)
into account. Differentiating, we obtain

NαV (t) ≤
{
V (t)

[
Nαq(t)−/q(t) +

nr(t)

a(t)

]}
+

mr(t)

a(t)q(t)
. (4.8)

From the proof of Theorem 3.2, we have that V (t) is bounded, say V (t) ≤ K1 for
some K1 > 0. Let ϵ > 0 be given. By conditions (3.12) and (3.15), we can choose
Tϵ > t0 such that

NJα
Tϵ

(
Nαq(s)−

q(s)

)
(t) <

ϵ

4K1
and NJα

Tϵ

( r
a

)
(t) < min

{
q1ϵ

4m
,

ϵ

4nK1

}
for t ≥ Tϵ. Then, an integration of (4.8) shows that V (t) ≤ ϵ for t ≥ Tϵ, that is,

F (x(t))

A
≤ F (x(t))

a(t)
≤ V (t) → 0

as t → ∞, which implies x(t) → 0 as t → ∞.
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Our next theorem is based on Theorem 3.3.

Theorem 4.4. Let conditions (3.2), (3.3), (3.5), (3.7), (3.10), and (3.12), (3.17) and
(3.18) hold. Then then every solution of (E) converges to zero as t → ∞.

Proof. Let x(t) be a solution of (E); it is bounded by Theorem 3.3. Define V (t) as
used in the proof of Theorem 4.3. Differentiating, we obtain

NαV (t) ≤ V (t)

{
(1 +M)Nαa(t)−/a(t) +Nαq(t)−/q(t) +M

r(t)

q(t)

}
+

M1

q1

r(t)

q(t)
.

Again V (t) is bounded, say V (t) ≤ K2 for some K2 > 0. Let ϵ > 0. We then find
T1 > t0 so that

NJα
T1

(
Nαa(s)−

a(s)

)
(t) <

ϵ

4(1 +M)K1
, NJα

T1

(
Nαq(s)−

q(s)

)
(t) <

ϵ

4K1

and

NJα
T1

(
r

q

)
(t) < min

{
ϵ

4MK1
,

q1ϵ

K1M1

}
for t ≥ T1. The remainder of the proof follows as before.

Corresponding to the boundedness result in Theorem 3.4 we have the following
theorem.

Theorem 4.5. Let conditions (3.1)–(3.3), (3.5), (3.15), (3.20) and (3.21) hold. Then
any solution x(t) of equation (E) satisfies x(t) → 0 as t → ∞.

Proof. Let x(t) be a solution of (E) and define W1(t) by

W1(t) = W1(t, x(t), y(t)) = q(t)F (x)/a(t) +G(y).

We then have

NαW1(t) = W1(t)

Nα
(

q(t)
a(t)

)
q(t)
a(t)

+M
Nαa(t)−

a(t)
+M

r(t)

a(t)

+M1
r(t)

a(t)
.

The boundedness of W1 follows from the conditions in the theorem. Denote this fact
by W1(t) ≤ K3 for all t > t0 and let ϵ > 0 be given. Our conditions allow us to choose
T2 > t0 such that

NJα
T2

Nα
(

q(t)
a(t)

)
q(t)
a(t)

 (t) <
ϵ

4K3
NJα

T2

(
Nαa(t)−

a(t)

)
(t) <

ϵ

4MK3

and

NJα
T2

(
r(t)

a(t)

)
(t) <

ϵ

4K3(M +M1)

for t ≥ T2. The remainder of the proof proceeds as before.
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Based on Theorem 3.5 we have our last result in this paper.

Theorem 4.6. Let conditions (3.1)–(3.3), (3.5), (3.7), (3.10), (3.12), and (3.15)
(3.22) and (3.23) hold. Then every solution x(t) of equation (E) converges to 0 as
t → ∞.

Proof. With W2(t) defined as in the proof of Theorem 3.5, we find that

NαW2(t) ≤ W2(t)

[
Nαa(t)−

a(t)
+

Nαq(t)−
q(t)

+
1

v1w1

(
Nαa(t)−

a(t)
+

Nαq(t)−
q(t)

)]
+

N2r(t)

a(t)q(t)

and W2(t) ≤ K4 for t ≥ t0.
For a given ϵ > 0, we choose T3 > t0 with

NJα
T2

(
Nαa(t)−

a(t)

)
(t) <

ϵ

K4(1 +
1

v1w1
)
, NJα

T2

(
Nαq(t)−

q(t)

)
(t) <

ϵ

K4(1 +
1

v1w1
)

and

NJα
T2

(
r(t)−
a(t)q(t)

)
(t) <

ϵ

4

for all t ≥ T2. The remainder of the proof is straightforward and is left to the
reader.

In conclusion, we wish to point out that all the results in this section are new for
fractional differential equations of any type. Also, we remark that it would be inter-
esting to apply this definition of a nonconformable fractional derivative to equations
on time scales.
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