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Abstract: In the present article, an extension for the family of
Volterra-type integro-differential equations, involving a generalization of
Hilfer fractional derivative with the Lorenzo-Hartley’s G-function (LHGF)
in the kernel, is proposed. A compact and computable solution of the con-
sidered family of integro-differential equations is established in terms of an
infinite series of LHGF. Further, certain known and new special cases of
the proposed family are also established. Furthermore, some examples of
the integro-differential equation are also discussed. Moreover, from the ap-
plication point of view, generalized fractional free-electron laser equations
involving the Caputo and the Riemann-Liouville fractional derivatives are
also determined. Finally, the graphical illustrations for the solutions of
the studied generalized fractional free-electron laser equations are demon-
strated.
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1. Introduction

The study of fractional calculus (FC) is gaining popularity in the scientific community.
It is applied to analyze several complicated phenomena in applied sciences. Several
fractional-order models are explored in the recent past that characterize the multi-
faceted behavior of a number of systems with complex dynamics. As an emerging
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area the subject has a wide variety of applications in different fields such as Medi-
cal Sciences, Space Sciences, Statistical mechanics, Control systems, Nuclear-physics,
Thermal power, Finance and Material sciences, etcetera. Substantial development for
the profound understanding of fractional calculus is noticed in the last few decades.
For some recent and new real-world applications of fractional calculus, we refer to Sun
at al. [62]. To review and insightful study of different concepts of fractional calculus
we refer to standard monographs such as [6, 7, 15, 24, 30, 32, 37, 39, 41, 42, 44, 48, 54].

Special functions (SFs) are widely used in mathematics [8]. Mathematicians and
applied scientists have made lots of efforts for the development of SFs while seeking an
exhaustive and unified theory for the subject matter. In most of the cases, classical
SFs are emerged as solutions of ordinary differential equations/partial differential
equations and represented in terms of series, or integrals, or in both [51, 52]. Several
classical SFs are useful in applied analysis and may be represented as particular
cases of generalized special functions (GSFs), such as Fox’s H-functions, Meijer’s G-
functions and generalized hypergeometric functions pFq, etcetera (we may call them
generalized classical functions). For a more detailed description of classical SFs, we
refer to classical monographs [1, 51, 52].

From the available corpus of classical SFs some may be referred as Special functions
for fractional calculus (SFs for FC) [32]. Most often, Special functions for fractional
calculus appear in the solution of arbitrary order differential equation or may arise
during modelling of complex physical systems, see [22, 29, 34, 38, 50] etcetera. FC,
in general, consists of differentiation and integration of arbitrary order and involves
differential and integral operator of fractional order. The development of the theory of
fractional calculus is largely dependent on the development of functions for the frac-
tional calculus [35]. Thus, one may expect that exploration about generalized func-
tions for fractional calculus may contribute towards the establishment of a unified the-
ory of fractional calculus. We believe that such generalizations of fractional calculus
may also provide a coherent methodology for analysis and applications. Generalized
fractional integral and derivative operators are generally introduced by the suitable
choice of functions that appeared in the kernel by more generalized functions, particu-
larly for more details we refer [16, 18, 19, 20, 21, 25, 26, 27, 28, 29, 49, 50, 56, 60, 61, 63].
One can believe that the future growth in the theory of fractional calculus as the gen-
eralized fractional calculus would be an outcome of the manifestation of generalized
special functions in different branches of science.

Fractional-order integro-differential equations are observed frequently in modelling
and analysis of physical systems, see [3, 13, 14, 55, 56]. For more background, we
refer to [43] and references therein. The present paper is about the applications of
generalized fractional operators and generalized functions for fractional calculus to
determine a unification of several fractional-order integro-differential equations that
arise in applied sciences. The work presented in this paper is inspired by the remark-
able contributions of other researchers (see [3, 4, 9, 10, 13, 14, 28, 43, 55]).

We present a brief description of different classical and novel fractional calculus
operators and introduce the Lorenzo-Hartley’s G-function (say LHGF) in the cur-
rent section. In Section 2, we propose a unification for family of fractional-ordered
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integro-differential equations including a generalized fractional function in the kernel
and a generalized fractional derivative operator (i.e., the Hilfer-Prabhakar derivative).
Next, we investigate the convergence of the obtained solution for further computa-
tional requirements. Further, some of the corollaries of Theorem 2.1 are derived in
the next Section 3. For the applications of the derived unification, two examples
are discussed in Section 4. Furthermore, in Section 5, solutions for two general-
ized fractional free-electron laser equations, involving Caputo and Riemann-Liouville
derivatives respectively, are determined. Moreover, some graphical illustrations for
the considered generalized fractional free-electron laser equations are demonstrated
in the same Section 5. Finally, in Section 6 we present some concluding remarks.

1.1. Riemann-Liouville fractional-order derivative

If h(t), where −∞ ≤ a < t < b ≤ ∞, is locally integrable real-valued function in
L1[a, b], then the µth(µ ∈ C) order right-sided Riemann-Liouville fractional integral
of h(t) is denoted by RLI

µ
a+h and defined as [42, 48, 54]:

(RLI
µ

a+h)(t) =
1

Γ(µ)

∫ t

a

h(u)

(t− u)1−µ
du = (h ∗ Fµ)(t), (1)

with the condition that (t > 0;Re(µ) > 0). The expression Fµ(t) is given by Fµ(t) =
tµ−1

Γ(µ)
.

If h(t) ∈ L1[a, b], where −∞ < a < t < b < ∞ and h ∗ Fm−µ ∈ Wm,1[a, b], m = ⌈µ⌉,
µ > 0, where ⌈·⌉ is the least integer function. Also, Wm,1[a, b] is used to denote the
Sobolev space defined as:

Wm,1[a, b] =
{
h(t) ∈ L1[a, b] :

dm

dtm
h(t) ∈ L1[a, b]

}
. (2)

The classical Riemann-Liouville right-sided fractional derivative of order µ (µ ∈ C,
Re(µ) > 0) is defined as:

(RLDµ
a+h)(t) =

( d
dt

)m(
(RLI

m−µ

a+ h)(t)
)
=

1

Γ(m− µ)

dm

dtm

∫ t

a

(t− u)m−µ−1h(u)du,

(3)
with m = −[−Re(µ)], where [·] denotes the integral part of the argument, i.e.

m =

 [Re(µ)] + 1 for µ /∈ N0,

µ for µ ∈ N0.
(4)

Particularly for µ = m ∈ N0, we write

(RLDµ
a+h)(t) = h(m)(t), (5)

where h(m)(t) is the standard mth order derivative of the function h(t).
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If AC[a, b] is the space of absolutely continuous functions and h(t) be the real-valued
functions with continuous derivative up to order (m − 1) on the interval [a, b] such
that hm−1(t) ∈ AC[a, b], we say that function h(t) ∈ ACm[a, b](m ∈ N). The space
ACm[a, b] of real-valued function is given as:

ACm[a, b] =
{
h : [a, b] → R :

dm−1

dtm−1
h(t) ∈ AC[a, b]

}
. (6)

1.2. Caputo fractional-order derivative

The Caputo fractional derivative of a function h(t), denoted by CDµ
a+h(t), has

a close connection with Riemann-Liouville fractional derivative RLDµ
a+h(t) (see

[15, 39, 41, 42]).

If h(t) ∈ ACm[a, b], µ ∈ C (Re(µ) > 0),m = ⌈µ⌉ then the right-sided µth order
Caputo fractional derivative of h(t) is defined as:

CDµ
a+h(t) =

(
RLI

m−µ

a+

dm

dtm
h
)
(t) =

1

Γ(m− µ)

∫ t

a

(t− u)m−µ−1 d
m

dum
h(u)du. (7)

The study of generalized fractional-order derivatives, being part of the investigation
of several researchers [19, 24, 27, 28, 29, 31, 34, 40, 55, 56, 59, 60, 61, 63], are of great
need as such generalized fractional derivatives play a vital role in the justification
of various phenomena in different complex systems. Now we consider some of the
popular generalizations of the above-defined classical fractional derivatives.

1.3. Hilfer derivative

If h(t) ∈ L1[a, b], h ∗ F(1−µ)(1−ν)(·) ∈ AC1[a, b] with the restrictions −∞ ≤ a < t <
b ≤ ∞, µ ∈ (0, 1) and ν ∈ [0, 1], then the right-sided Hilfer fractional-order derivative
of h(t), symbolically denoted by (HD

µ,ν
a+ h)(t), is defined as [24, 25, 26, 27, 30, 63]:

(HD
µ,ν

a+ h)(t) =
(
RLI

ν(1−µ)

a+

d

dt
RLI

(1−ν)(1−µ)

a+ h
)
(t). (8)

For ν = 0, the derivative HD
µ,ν
a+ reduces into the classical Riemann-Liouville fractional-

order derivative RLDµ
a+. Also on taking ν = 1 the derivative HD

µ,ν
a+ becomes Caputo

fractional-order derivative [33].

1.4. Prabhakar integral

If h ∈ L1(a, b), 0 ≤ a < t ≤ b ≤ ∞, then the right-sided Prabhakar integral PE
γ
ρ,µ,ω,a+

of the function h(t) is given as [29, 49, 50]:

(PE
γ

ρ,µ,ω,a+h)(t) = h ∗ eγρ,µ,ω(t) =
∫ t

a

(t− u)µ−1Eγ
ρ,µ(ω(t− u)ρ)h(u)du, (9)
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with γ, ρ, µ, ω ∈ C and Re(ρ) > 0,Re(µ) > 0. The symbol eγρ,µ,ω(t) in above Eq.
(9) is tµ−1Eγ

ρ,µ(ωt
ρ), and Eγ

ρ,µ(·) (where (·) denotes argument of the function) is
the generalized Mittag-Leffler function, for more details, see [50]. If we take γ = 0,
the integral operator PE

γ
ρ,µ,ω,a+ reduces into the Riemann-Liouville fractional-order

integral operator (see Eq. (1)).

1.5. Prabhakar derivative

The Prabhakar derivative is defined as the inverse operator of Prabhakar integral.
It is a generalization of the classical Riemann-Liouville derivative. If h ∈ L1(a, b),
0 ≤ a < t ≤ b ≤ ∞, and h ∗ e−γ

ρ,m−µ,ω(·) ∈ Wm,1(a, b),m = ⌈µ⌉, the right-sided

Prabhakar derivative PD
γ
ρ,µ,ω,a+ of a function h(t) is given as [29, 49, 50]:

(PD
γ

ρ,µ,ω,a+h)(t) =
( dm
dtm

(PE
−γ

ρ,m−µ,ω,a+h)
)
(t), (10)

where γ, ρ, µ, ω ∈ C and Re(ρ) > 0,Re(µ) > 0.

1.6. Regularized Prabhakar derivative

The regularized Prabhakar derivative operator can be considered as a generalization
of Caputo fractional derivative operator. If h(t) ∈ ACm(a, b), 0 ≤ a < t ≤ b ≤ ∞, the
regularized Prabhakar derivative is defined as [49]:

(CD
γ

ρ,µ,ω,a+h)(t) =
(
PE

−γ

ρ,m−µ,ω,a+

dm

dtm
h
)
(t). (11)

On substituting γ = 0 the derivative (CD
γ
ρ,µ,ω,a+h)(t) reduces into Caputo derivative

CDµ
a+h(t), defined by Eq. (7) in the subsection 1.2.

1.7. Hilfer-Prabhakar derivative

The Hilfer-Prabhakar derivatives (also known as the generalized Hilfer derivative) is
emerging as a useful differential operator, particularly in mathematical physics and
other branches of applied mathematics. Garra et al. [19] have described the dynam-
ics of the generalized renewal stochastic process and some other classical equations of
mathematical physics in terms of Hilfer-Prabhakar derivatives.

If h ∈ L1(a, b), h∗e−γ(1−ν)
ρ,(1−ν)(1−µ),ω(.)∈ AC1(a, b) with the restrictions 0 ≤ a < t ≤ b ≤ ∞,

µ ∈ (0, 1), and ν ∈ [0, 1], then the Hilfer-Prabhakar derivative is defined as [19]:

(HPD
γ,µ,ν

ρ,ω,a+h)(t) =
(
PE

−γν

ρ,ν(1−µ),ω,a+

d

dt
(PE

−γ(1−ν)

ρ,(1−µ)(1−ν),ω,a+h)
)
(t), (12)

where ω, ρ, γ ∈ C with Re(ρ) > 0. Particularly, If we put γ = 0, the Hilfer-Prabhakar
derivative becomes the Hilfer derivative given in above Eq. (8). The remarkable prop-
erty of the Hilfer-Prabhakar derivative is that it interpolates between the Prabhakar
derivative and its regularized version, given in Eq. (10) and Eq. (11), respectively.
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1.8. The Lorenzo-Hartley’s function

Special functions arise ubiquitously in solutions of fractional differential equations.
The Agarwal’s function, Mittag-Leffler functions (with one, two & three parameters),
Erdélyi’s function, Robotnov & Hartley’s function, Miller & Ross’s function are some
of the appear naturally in the solution of various differential equations of integer and
non-integer orders. Lorenzo and Hartley [34] investigated a multivalued generalization
of standard exponential function known as Lorenzo-Hartley’s G-function (LHGF),
denoted as G{ρ,β,δ}(ω, v, t). Being an eigenfunction, all the order fractional differ-
integrals of LHGF appear in terms of LHGF (with suitably modified parameters). In
a recent monograph [35], it is shown that such generalized functions have a great po-
tential in investigations of scientific applications pertaining to Galactic classification,
Shell morphology, Weather prediction, etcetera. The infinite series representation of
LHGF given as:

G{ρ,β,δ}(ω, v, t) =

∞∑
k=0

(δ)kω
k(t− v)(k+δ)ρ−β−1

k!Γ((k + δ)ρ− β)
, with Re(ρδ − β) > 0, (13)

where (δ)k is the generalization of factorial (also known as rising factorial or Pochham-
mer’s symbol), is defined as:

(δ)0 = 1, (δ)1 = δ, (δ)2 = (δ)(δ + 1), ..., (δ)n = (δ)(δ + 1)...(δ + n− 1). (14)

On substituting v = 0 Eq. (13) reduces in to following convenient form:

G{ρ,β,δ}(ω, 0, t) = G{ρ,β,δ}(ω, t) =

∞∑
k=0

(δ)kω
kt(k+δ)ρ−β−1

k!Γ((k + δ)ρ− β)
, with Re(ρδ − β) > 0.

(15)
A number of functions have direct and elegant relationships with the LHGF

G{ρ,β,δ}(ω, b, t), for more details one can refer recent investigation [46].

A fractional function LHGF is gaining importance in applications and analysis as
it can handle increased time-domain complexity. In [64] Yang has discussed general-
ized fractional derivatives and integrals involving LHGFs (of one and two parameters)
in the kernel and illustrates some applications in applied sciences. In a most recent
monograph, Yang et al. [65] have demonstrated applications of such fractional op-
erators for the investigations of models pertaining to viscoelasticity. Chaurasia and
Pandey [11, 12] have extended the work of Haubold and Mathai [23] and studied
computable closed-forms of some generalized fractional kinetic equations in terms of
LHGF. Saxena et al. [57] have used LHGF in the investigation of generalized frac-
tional kinetic equations. Goufo [17] have applied this function in the study related to
bio-mathematical analysis associated with cellulose degradation dynamics. For some
more details about LHGF one can also refer to Mahmood et al. [36], Saha et al. [53],
Shakeel et al. [58] and recent investigations by Pandey [45, 46] .
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2. A unification of fractional Volterra-type integro-
differential equations

In this section, after presenting a chronological review pertaining to the development
of a Volterra-type fractional integro-differential equation (FIDE), we propose a unified
family of Volterra-type fractional integro-differential equations involving LHGF in the
kernel and a generalized Hilfer derivative. It is emphasized that the solution obtained
is also represented in a closed-form of LHGF. For the sake of simplified computations
via LHGF we have assumed that the order of fractional derivative lies between 0 and
1. Moreover, we discuss the convergence of the solution by the method recently used
by Giusti and Colombaro in [20] during the investigation of a generalized Viscoelastic
model.

Dattoli et al. [14] studied the following first-order integro-differential equation of
Volterra-type involving exponential function in the kernel:

d

dt
(h(t)) = −iπg0

∫ t

0

ζh(t− ζ)eiωζdζ, 0 ≤ t ≤ 1, with h(0) = h0 and g0, ω ∈ R,

(16)
and discussed analytical treatment that describes the unsaturated behaviour of the
free-electron laser equation (for other details, see [13]).

In this direction, Boyadjiev et al. [9] proposed following fractional analogue form
of the Volterra-type integro-differential Eq. (16) and examined analytic and numeri-
cal behaviour of the solution:(

RLD
µ

t h
)
(t) = ℓ

∫ t

0

ζh(t− ζ)eiωζdζ, 0 ≤ t ≤ 1, (17)

with RLD
µ−j
t h(t)|t=0 = hj ∈ R (j = 1, 2, 3, . . . , n), and where µ, ℓ ∈ C, (n − 1) <

Re(µ) ≤ n, n = −[−Re(µ)], ω ∈ R. The symbol RLD
µ
t in above Eq. (17) denotes is

the well-known Riemann-Liouville fractional derivative of order µ.
On substituting ϑ = (t− ζ), the Eq. (17) reduces into the following alternative form:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

(t− ϑ)h(ϑ)eiω(t−ϑ)dϑ. (18)

Concurrently, Boyadjiev et al. [10] studied and investigated non-homogeneous FIDE
of the form: (

RLD
µ

t h
)
(t) = ℓ

∫ t

0

ζh(t− ζ)eiωζdζ + β′eiωt, 0 ≤ t ≤ 1, (19)

with RLD
µ−j
t h(t)|t=0 = hj ∈ R (j = 1, 2, 3, . . . n), where µ, β′, ℓ ∈ C; ω ∈ R; (n−1) <

Re(µ) ≤ n, and n = −[−Re(µ)]. An alternative form of the above FIDE can also



68 S.C. Pandey, K. Chaudhary

be obtained as:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

(t− ϑ)h(ϑ)eiω(t−ϑ)dϑ+ β′eiωt. (20)

Al-Shammery et al. [4] discussed following generalized form of FIDE and extended
the idea of Boyadjiev et al. [10]:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

ζκh(t− ζ)eiωζdζ + β′eiωt, 0 ≤ t ≤ 1, (21)

with µ, β′, ℓ ∈ C, and ω ∈ R, and κ > −1. The above FIDE can be alternatively
put in following form:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

(t− ϑ)κh(ϑ)eiω(t−ϑ)dϑ+ β′eiωt, 0 ≤ t ≤ 1, (22)

withµ, β′, ℓ ∈ C, ω ∈ R and κ > −1.

In continuation Saxena and Kalla [55] considered following extension of FIDE in-
volving Kummer’s hypergeometric function [38, 39]:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

ζκh(t−ζ)Φ(b, κ+1; iωζ)dζ+ρ′tγΦ(β′, γ+1; iωt), 0 ≤ t ≤ 1, (23)

with µ, b, β′, ρ′, ℓ ∈ C, ω ∈ R, andκ > −1. The above FIDE (23) alternatively can be
put in following form:

(
RLD

µ

t h
)
(t) = ℓ

∫ t

0

(t− ϑ)κh(ϑ)Φ(b, κ+ 1; iω(t− ϑ))dϑ+ ρ′tγΦ(β′, γ + 1; iωt), (24)

0 ≤ t ≤ 1, with µ, b, β′, ρ′, ℓ ∈ C and ω ∈ R and κ > −1.

At the same time Kilbas et al. [28] have proposed and studied following interest-
ing and generalized form of the of above Eq. (24) which involves the well-known
Mittag-Leffler function [22] in the kernel and a general function ψ(t):

(
RLD

µ

a+h
)
(t) = ℓ

∫ t

a

(t− ϑ)(κ−1)Eδ
ρ,κ(ω(t− ϑ)ρ)h(ϑ)dϑ+ ψ(t), (25)

where µ, ρ, κ, δ and ω ∈ C (with Re(κ) > 0, Re(µ) > 0, Re(ρ) > 0).

Now, we propose a unified family of fractional integro-differential equations of
Volterra-type. Such unifications may deduce several interesting forms of well-known
(maybe also new) fractional integro-differential equations and provide a common
framework for computation of numerous problems in applied sciences.
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Theorem 2.1. If ψ(t) is a general function with h(t) ∈ L1(0,∞); γ, δ, ρ, ω, α, β
∈ C; 0 < µ < 1, 0 ≤ ν ≤ 1; Re(γ) ≥ 0, Re(δ) ≥ 0, Re(ρδ − β) > 0, Re(ρ) > 0,
Re(ω) > 0, then for FIDE:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t), (26)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, the following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ−ρδ)k−µ+ρ{(γ+δ)k+γ}],[(γ+δ)k+γ]}(ω, 0, t)

]

+c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ−ρδ)k−µ−ν(1−µ)+ρ{(γ+δ)k+γ−νγ}],[(γ+δ)k+γ−νγ]}(ω, 0, t)

]
, (27)

provided the sums on the RHS of above Eq. (27) converges.

Proof. The proof of the theorem is based on the Laplace transform method [47].
Applying the Laplace transform both the sides of the above integro-differential Eq.
(26), and using the following well-known result pertaining to the Laplace transform
of Hilfer-Prabhakar derivative operator (see for more details [19, 46, 49]):

L
(
HPD

γ,µ,ν

ρ,ω,a+h
)
(s) = L

(
(PE−γν

ρ,ν(1−µ),ω,a+

d

dt
(PE

−γ(1−ν)
ρ,(1−µ)(1−ν),ω,a+h)

)
(s)

= sµ[1− ωs−ρ]γL[h](s)− s−ν(1−µ)[1− ωs−ρ]γν
(
PE

−γ(1−ν)
ρ,(1−µ)(1−ν),ω,a+h(t)

)
t=a+

, (28)

we get

sµ(1− ωs−ρ)γ h̄(s)− cs−ν(1−µ)(1− ωs−ρ)γν + α
sβ−ρδ

(1− ωs−ρ)δ
h̄(s) = ḡ(s), (29)

where h̄(s) and ḡ(s) are the Laplace transforms of h(t) and ψ(t), respectively. Also,
Eq. (29) can be rewritten as:

h̄(s)

[
sµ(1− ωs−ρ)γ + α

sβ−ρδ

(1− ωs−ρ)δ

]
= ḡ(s) + cs−ν(1−µ)(1− ωs−ρ)νγ , (30)

or alternatively

h̄(s) =
ḡ(s)

sµ(1− ωs−ρ)γ

[
1 +

α

sµ+ρδ−β(1− ωs−ρ)(γ+δ)

]−1

+
s−ν(1−µ)(1− ωs−ρ)νγc

sµ(1− ωs−ρ)γ

[
1 +

α

sµ+ρδ−β(1− ωs−ρ)(γ+δ)

]−1

. (31)
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By the use of binomial series expansion the above Eq. (31) reduces into following
computable series:

h̄(s) = ḡ(s)

∞∑
k=0

(−α)k s(β−µ−ρδ)k−µ

(1− ωs−ρ)(γ+δ)k+γ
+ c

∞∑
k=0

(−α)k s(β−µ−ρδ)k−µ−ν(1−µ)

(1− ωs−ρ)(γ+δ)k+γ−νγ
. (32)

It is easy to see that the expressions involved in Eq. (31) will be there in the existence
provided both the infinite series are absolutely convergent power series, i.e., we must
have following condition: ∣∣∣ α

sµ+ρδ−β(1− ωs−ρ)(γ+δ)

∣∣∣ < 1. (33)

By the application of the well-known convolution theorem of the Laplace transform
and taking inverse Laplace transform on both the sides of above Eq. (32) , we arrive
on the desired solution of Eq. (26), given in Eq. (27).

Computation of the solution obtained in Eq. (27) is less trivial and based on the
convergence of each term involved therein. The first expression involves convolution
of the function ψ(t) with each term of infinite series of LHGF, i.e.

ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ−ρδ)k−µ+ρ{(γ+δ)k+γ}],[(γ+δ)k+γ]}(ω, 0, t)

]
. (34)

The convergence of the above expression, Eq. (34), is based on the convergence of
following infinite series consisting repeated series of LHGF:

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ−ρδ)k−µ+ρ{(γ+δ)k+γ}],[(γ+δ)k+γ]}(ω, 0, t)

]
,

which can be rewritten by the use of series form of LHGF as:

∞∑
k=0

(−α)k
∞∑

n=0

((γ + δ)k + γ)nω
nt{(n+(γ+δ)k+γ)ρ−(β−µ−ρδ)k+µ−ρ((γ+δ)k+γ)−1}

n!Γ{(n+ (γ + δ)k + γ)ρ− (β − µ− ρδ)k + µ− ρ((γ + δ)k + γ)}
,

(35)
or equivalently

∞∑
k=0

(−α)k
∞∑

n=0

((γ + δ)k + γ)nω
nt{ρn+(ρδ+µ−β)k+µ−1}

n!Γ{ρn+ (ρδ + µ− β)k + µ}
. (36)

In order to prove the absolute convergence of the series labelled by k, we need to show
that the series

∞∑
k=0

(−α)k ((γ + δ)k + γ)nω
nt{ρn+(ρδ+µ−β)k+µ−1}

n!Γ{ρn+ (ρδ + µ− β)k + µ}
, (37)
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is absolutely convergent for each (fixed) n ∈ N ∪ {0} (for more details, see [5]).
Let us define

uk(n, t) = (−α)k ((γ + δ)k + γ)nω
nt{ρn+(ρδ+µ−β)k+µ−1}

n!Γ{ρn+ (ρδ + µ− β)k + µ}

= (−α)kΓ{(γ + δ)k + γ + n}
Γ{(γ + δ)k + γ}

(ωtρ)nt{(ρδ+µ−β)k+µ−1}

n!Γ{ρn+ (ρδ + µ− β)k + µ}
, (38)

using the asymptotic behaviour of the ratio of gamma functions we get∣∣∣uk+1(n, t)

uk(n, t)

∣∣∣ ∼ ∣∣∣ (−α)t(ρδ+µ−β)

k(ρδ + µ− β)

∣∣∣ ∀ t > 0, ∀ n ∈ N ∪ {0}, (39)

hence for k → ∞ we get

lim
k→∞

∣∣∣uk+1(n, t)

uk(n, t)

∣∣∣ = 0, ∀ t > 0, ∀ n ∈ N ∪ {0}, (40)

which indicates that the absolute convergence of the series involved in the first term
of Eq. (27). Also, if the function ψ(t) is continuous and suitably defined in L1(0,∞)
then the convolution must be convergent and the first term of Eq. (27) must be
convergent. The convergence of the second term of Eq. (27) can also be investigated
in a similar manner, thus we omit the details here.

3. Certain Volterra-type fractional integro-differential
equations based on the family of unified fractional
Volterra-type integro-differential equations

The above-discussed family of Volterra-type FIDE is general in nature and unifies
several elegant and interesting results proposed by eminent scholars. In the present
section, based on Theorem 2.1 we deduce some of the corollaries which may be directly
applicable in different fields of sciences, such as laser, nuclear, astrophysics, thermal
analysis, heat transfer etcetera.
For δ = 0;β = −η, Theorem 2.1 reduces into the following result recently investigated
by Pandey [46]:

Corollary 3.1. If h(t) ∈ L1(0,∞); γ, ρ, ω, α, η ∈ C; 0 < µ < 1, 0 ≤ ν ≤ 1;Re(γ) ≥
0,Re(δ) ≥ 0, Re(η) > 0,Re(ρ) > 0,Re(ω) > 0, then for the FIDE:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,−η,0}(ω, x, t)h(x)dx = ψ(t), (41)

or, equivalently (
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) +

α

Γ(η)

∫ t

0

(t− x)η−1h(x)dx = ψ(t), (42)
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with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[ργ(k+1)−(η+µ)k−µ],[γ(k+1)]}(ω, 0, t)

]

+c

∞∑
k=0

(−α)k
[
G{ρ,[ν(µ−1)−µ−(η+µ)k+ρ{γ(k+1)−νγ}],[γ(k+1)−νγ]}(ω, 0, t)

]
, (43)

provided the sums on the RHS of above Eq. (43) converges.

Remark. The results presented as Corollaries 7, 8 and 9 in [46] can also be deduced
as the particular cases of the theorem 2.1. For more details, see [2] and [63].

On taking γ = 0 in Theorem 2.1, we arrive on the following corollary pertaining
to certain family of Volterra-type FIDE based on the Hilfer derivative that involves
LHGF in the kernel.

Corollary 3.2. If h(t) ∈ L1(0,∞); 0 < µ < 1, 0 ≤ ν ≤ 1; α, ρ, β, δ ∈ C;
Re(ρδ − β) > 0, Re(ω) > 0 then for FIDE of the form:(

HDµ,ν

0+ h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t), (44)

with
(
RLI

(1−µ)(1−ν)
0+ h(t)

)
t=0+

= c, following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]

+c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ−ν(1−µ)],[δk]}(ω, 0, t)

]
, (45)

provided the sums on the RHS of above Eq. (45) converges.

On setting ν = 0 in Corollary 3.2, we get the following form of Volterra-type
FIDE:

Corollary 3.3. If h(t) ∈ L1(0,∞); 0 < µ < 1; α, ρ, β, δ ∈ C; Re(ρδ − β) > 0,
Re(ω) > 0, then for FIDE:(

RLD
µ

0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t), (46)

with
(
RLI

(1−µ)
0+ h(t)

)
t=0+

= c, following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]
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+c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]
, (47)

provided the sums on the RHS of above Eq. (47) converges.

Remark. If we substitute α = −ℓ(Γ(κ+ 1)) with ρ→ 1; β → (ϖ − κ+ 1); δ → ϖ;
ω → iω and ψ(t) = ρ′Γ(γ + 1)G{1,(β′−γ+1),β′}(iω, 0, t) in the above Eq. (46) of
Corollary 3.3, we arrive on the following Volterra-type FIDE:(

RLD
µ

0+h
)
(t) = ℓ(Γ(κ+ 1))

∫ t

0

G{1,(ϖ−κ+1),ϖ}(iω, x, t)h(x)dx

+ρ′Γ(γ + 1)G{1,(β′−γ+1),β′}(iω, 0, t), (48)

with
(
RLI

(1−µ)
0+ h(t)

)
t=0+

= c. The FIDE in Eq. (48) is equivalent to the result studied

by Saxena and Kalla [55], discussed in Eq. (24).

Remark. Using the relation given in [46], Eq. (25), in above Eq. (46), we arrive on
following FIDE:(

RLD
µ

0+h
)
(t) + α

∫ t

0

(t− x)ρδ−β−1Eδ
ρ,(ρδ−β)(ω(t− x)ρ)(h(x)dx = ψ(t), (49)

with
(
RLI

(1−µ)
0+ h(t)

)
t=0+

= c, which on substituting α = −ℓ; ρδ − β = κ yields the

well-known Volterra-type integro-differential equation investigated by Kilbas et al.
[28], given in above Eq. (25).

On taking ν = 1 in Corollary 3.2, we get following family of Volterra-type FIDE
in terms of the Caputo derivative involving LHGF in the kernel.

Corollary 3.4. If h(t) ∈ L1(0,∞); 0 < µ < 1; α, ρ, β, δ ∈ C; Re(ρδ − β) > 0,
Re(ω) > 0, then for FIDE:(

CD
µ

0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t), (50)

with h(t)t=0+ = c, following solution holds:

h(t) = ψ(t) ∗
∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]

+c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ−(1−µ)],δk}(ω, 0, t)

]
, (51)

provided the sum on the RHS of above Eq. (51) converges.

Remark. The detailed analysis of the corollaries concerning convergence discussed in
this section can be done exactly in the same way as we have proposed in Theorem 2.1.
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4. Certain examples pertaining to the unified fam-
ily of Volterra-type fractional integro-differential
equations

In this section, we investigate some applications of Theorem 2.1 by considering
some particular forms of the function ψ(t). Let’s consider the case when ψ(t) =
G{ρ,η,ξ}(ω, 0, t), we arrive on the following result:

Example 4.1. If h(t)∈L1(0,∞); 0 < µ < 1, 0 ≤ ν ≤ 1; γ ≥ 0; ρ, ω, α, η, β, δ, ξ, λ ∈ C;
Re(ρδ − β) > 0, Re(ρξ − η) > 0, Re(ρ) > 0, Re(ω) > 0, then for FIDE:

(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = ψ(t) = λG{ρ,η,ξ}(ω, 0, t), (52)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, following solution holds:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k−ν(1−µ)−µ+ργ(1−ν)],[(γ+δ)k+γ(1−ν)]}(ω, 0, t)

]

+λ

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k+(η−µ+ργ)],[(γ+δ)k+γ+ξ]}(ω, 0, t)

]
, (53)

provided the sum on RHS of above Eq. (53) converges.

Particularly, if we substitute λ = 0 in the above example we arrive on the follow-
ing homogeneous FIDE:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = 0, (54)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, then following solution holds:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k−ν(1−µ)−µ+ργ(1−ν)],[(γ+δ)k+γ(1−ν)]}(ω, 0, t)

]
, (55)

provided the sum on RHS of above Eq. (55) converges.

Furthermore, if we substitute δ = 0; β = −τ with the conditions Re (ρ) > 0,
Re(τ) > 0,Re(ρξ − η) > 0, Re(ω) > 0 in Example 4.1, we arrive on following FIDE:

(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,−τ,0}(ω, x, t)h(x)dx = λG{ρ,η,ξ}(ω, 0, t), (56)
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or equivalently (applying the relation [46], Eq. (16))(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) +

α

Γ(τ)

∫ t

0

(t− x)τ−1h(x)dx = λG{ρ,η,ξ}(ω, 0, t), (57)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, which has its solution as:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(ργ−τ−µ)k−ν(1−µ)−µ+ργ(1−ν)],[γk+γ(1−ν)]}(ω, 0, t)

]

+λ

∞∑
k=0

(−α)k
[
G{ρ,[(ργ−τ−µ)k+(η−µ+ργ)],[γk+γ+ξ]}(ω, 0, t)

]
, (58)

provided the sum on the RHS of above Eq. (58) converges.

Let us consider the case when the function ψ(t) = λG{ρ,−η,0}(ω, 0, t), then by the
Theorem 2.1 we can deduce following particular example:

Example 4.2. If h(t) ∈ L1(0,∞); 0 < µ < 1, 0 ≤ ν ≤ 1; γ ≥ 0; ρ, ω, α, η, β, δ ∈ C;
Re(ρδ − β) > 0, Re(η) > 0, Re(ρ) > 0, Re(ω) > 0 then for FIED:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = λG{ρ,−η,0}(ω, 0, t), (59)

or equivalently (applying the relation [46], Eq. (21))(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = λ
tη−1

Γ(η)
, (60)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h(t)

)
t=0+

= c, following solution holds:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k−ν(1−µ)−µ+ργ(1−ν)],[(γ+δ)k+γ(1−ν)]}(ω, 0, t)

]

+λ

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ+ργ)k+(ργ−η−µ)],[(γ+δ)k+γ]}(ω, 0, t)

]
, (61)

provided the sum on RHS of above Eq. (61) converges.

Moreover, for δ = 0;β = −σ with Re(σ) > 0,Re(η) > 0 FIDE, presented as Eq.
(59), reduces into following form:(

HPD
γ,µ,ν

ρ,ω,0+h
)
(t) + α

∫ t

0

G{ρ,−σ,0}(ω, x, t)h(x)dx = λG{ρ,−η,0}(ω, 0, t), (62)
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which equivalently can be rewritten as(
HPD

γ,µ,ν

ρ,ω,0+h
)
(t) +

α

Γ(σ)

∫ t

0

(t− x)σ−1h(x)dx = λ
tη−1

Γ(η)
, (63)

with
(
PE

−γ(1−ν)
ρ,(1−ν)(1−µ),ω,0+h

)
t=0+

= c has its solution as:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(ργ−σ−µ)k−ν(1−µ)−µ+ργ(1−ν)],[γk+γ(1−ν)]}(ω, 0, t)

]

+λ

∞∑
k=0

(−α)k
[
G{ρ,[(ργ−σ−µ)k+(ργ−η−µ)],[γk+γ]}(ω, 0, t)

]
, (64)

provided the sum on RHS of above Eq. (64) converges.

The solutions of Theorem 2.1, its corollaries, and associated examples are obtained
in terms of LHGF where we tactically assumed that the range of different parameters
are taken in such a way that the obtained solutions must be convergent.

5. Applications in Free-electron laser (FEL) equa-
tions

To demonstrate applications of the presented unified family of fractional Volterra-
type integro-differential equation, we deduce two fractional-order generalizations of
free-electron laser equations involving LHGF in the kernel as the special cases of
Example 4.1.

5.1. Fractional free-electron laser equation based on Caputo
derivative

On setting λ = 0, γ = 0, ν = 1, above Example 4.1 reduces into following generali-
zation of fractional free-electron laser equation based on Caputo derivative:

If 0 < µ < 1, Re(ρδ − β) > 0, then FIDE that represents generalized FEL :(
CD

µ

0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = 0, (65)

with [h(t)]t=0+ = c, has its solution in terms of LHGF as:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−1],δk}(ω, 0, t)

]
, (66)

provided the sum on RHS of Eq. (66) converges.
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Figure 1: Graph demonstrates the real part of the solution for Caputo derivative of
order µ = 1/9

Figure 2: Graph exhibits the imaginary part of the solution for Caputo derivative of
order µ = 1/9
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Figure 3: Graph displays the real part of the solution for Caputo derivative of order
µ = 1/2

Figure 4: Graph describes the imaginary part of the solution for Caputo derivative
of order µ = 1/2
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Figure 5: Graph indicates the real part of the solution for Caputo derivative of order
µ = 8/9

Figure 6: Graph reflects the imaginary part of the solution for Caputo derivative of
order µ = 8/9
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5.2. Fractional free-electron laser equation based on Riemann-
Liouville derivative

On substituting λ = 0, γ = 0, ν = 0, above Example 4.1 give rise to the following frac-
tional homogeneous fractional free-electron laser equation based on Riemann-Liouville
derivative:

If 0 < µ < 1, Re(ρδ − β) > 0, then FIDE that represents generalized FEL:(
RLDµ

0+h
)
(t) + α

∫ t

0

G{ρ,β,δ}(ω, x, t)h(x)dx = 0, (67)

with
(
RLI(1−µ)

0+ h(t)
)
t=0+

= c, has it solution in terms of LHGF as:

h(t) = c

∞∑
k=0

(−α)k
[
G{ρ,[(β−µ)k−µ],δk}(ω, 0, t)

]
, (68)

provided the sum on RHS of Eq. (68) converges.

Figure 7: Graph demonstrates the real part of the solution for Riemann-Liouville
derivative of order µ = 1/9
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Figure 8: Graph exhibits the imaginary part of the solution for Riemann-Liouville
derivative of order µ = 1/9

Figure 9: Graph displays the real part the of the solution for Riemann-Liouville
derivative of order µ = 1/2
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Figure 10: Graph describes the imaginary part of the solution for Riemann-Liouville
derivative of order µ = 1/2

Figure 11: Graph indicates the real part the of the solution for Riemann-Liouville
derivative of order µ = 8/9
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Figure 12: Graph reflects the imaginary part of the solution for Riemann-Liouville
derivative of order µ = 8/9

To illustrate the behaviour of the solutions of the above-mentioned generalized
free-electron laser Equations (65) and (67) based on Caputo derivative and Riemann-
Liouville derivative, respectively, the computation for the solutions are performed
on MATLAB using series representation of LHGF. Particularly, the parameters for
computations are taken as: α = 1, c = 1, ρ = 1, δ = 1, (0 + i0.07) < ω < (0 + i7),
(with the difference of (0 + i0.07)) 0.01 < t < 1.0, and β = 0.2 (with the difference of
0.01). The behavior of the obtained solutions are shown in figures. Figure 1 through
Figure 6 exhibit the behaviour of the real and imaginary parts of the solutions for
homogeneous fractional free-electron laser Eq. (65) with Caputo derivative. Figure
7 through Figure 12 demonstrate the behaviour of the real and imaginary parts of
the solutions for homogeneous fractional free-electron laser Eq. (67) with Riemann-
Liouville derivative.

6. Concluding remarks

In this paper, we have investigated a unified family of Volterra-type fractional integro-
differential equations. The solution of the considered family is determined in the
closed-forms of LHGF, which works well in case of increased time-domain complex-
ity. To investigate the computational nature of the solution of the considered unified
family, we have discussed the convergence of the solution. Several known and new
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fractional integro-differential equations involving different functions for fractional cal-
culus in the kernel (obtained by proper choice of parameters in LHGF) accompanied
by various forms of fractional derivatives, can be derived by specializing the param-
eters involved therein. Notably, the results can also be used to obtain closed-form
solutions for several other Volterra-type fractional integro-differential equations that
arise in different engineering sciences fields. From the application point of view, we
have illustrated two forms of fractional free-electron laser and obtained their solutions
in the closed and computable form of LHGF. Several graphical illustrations are pre-
sented, which demonstrate the behaviour of the solutions.

Remarkably, Hilfer-Prabhakar derivative interpolates between the Prabhakar deriva-
tive and its regularized version, given in Eq. (10) and Eq. (11), respectively. It
can also be reduced into Hilfer derivative which may reduced into Riemann-Liouville
and Caputo fractional derivatives by proper choice of parameters. Thus, the re-
sults established in the paper may be used to derive closed-form solutions for several
Volterra-type fractional integro-differential equations, hitherto scattered in the litera-
ture.
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