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Abstract: In the present paper, based on a separation condition on
the spectrum of a self-adjoint operator T0 on a separable Hilbert space H,
we prove that the system of root vectors of the perturbed operator T (ε)
given by

T (ε) := T0 + εT1 + ε2T2 + . . .+ εkTk + . . .

is complete and forms a basis with parentheses in H, for small enough
|ε|. Here ε ∈ C and T1, T2, . . . are linear operators on H having the
same domain D ⊃ D(T0) and satisfying a speci�c growing inequality. The
obtained results are of importance for applications to a non-self-adjoint
Gribov operator in Bargmann space and to a non-self-adjoint problem
deduced from a perturbation method for sound radiation.
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1. Introduction

For non-self-adjoint perturbations of a self-adjoint operator, the crucial problem is
the study of the spectral properties. For instance, the existence of a basis (possibly
with parentheses) of root vectors is an important property. In order to prove the
existence of such basis, several authors studied the comportment of the eigenvalues
and established di�erent conditions in terms of the spectrum (see [3]-[5], [8]-[13], [16]-
[20], [22], [24] and [25]). Indeed, many non-self-adjoint ordinary di�erential operators
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can be considered as a perturbation T+B of a leading self-adjoint component T by its
subordinate B. In [22], A. S. Markus claimed that G = T+B admits an unconditional
basis with parentheses of root vectors if B is p-subordinate to T and the eigenvalue-
counting function of T satisfy a certain asymptotic growth condition. One might ask
whether we can construct a basis if the p-subordinate condition is relaxed. A positive
answer is given by A. A. Shkalikov [24]. He assumed that T is positive, self-adjoint
with discrete spectrum and its eigenvalues (µn)n∈N∗ are not condense, i.e.,

µn+q − µn ≥ 1, for some q ∈ N∗. (1.1)

Further, he required that B verify

∥Bψn∥ ≤ b, (1.2)

where (ψn)n∈N∗ is an orthonormal system of eigenvectors associated to the eigenval-
ues (µn)n∈N∗ of T . Under these assumptions, he established an asymptotic relation
between the eigenvalue-counting functions of G and T and he claimed that the system
of root vectors of G forms a basis with parentheses in H. More precisely, he proved
the existence of a spectral condition

n(r,G)− n(r, T ) = O(1),

under which he guarantees the existence of a basis with parentheses of root vectors
(see [24, Theorem 2]).
Here n(r, T ) (respectively, n(r,G)) denotes the sum of multiplicities of all eigenvalues
of T (respectively, G) contained in the disk {λ ∈ C such that |λ| ≤ r}.

Notice that in classical perturbation theorems for bases or Riesz bases, the authors
always required that the eigenvalues of T are with multiplicity one (for instance, see
[6], [7, Theorem XIX.2.7] and [21, Theorem V.4.15a]). Although, by assuming that
the eigenvalues are with �nite multiplicity, several authors such as A. Jeribi [18, 19],
A. S. Markus [22], A. A. Shkalikov [24] and C. Wyss [25] proved the existence of bases
with parentheses or unconditional bases with parentheses.
It is interesting to note here that the concept of bases (or unconditional bases) with
parentheses is a natural generalization of the one of the bases (or Riesz bases).
Furthermore, [24, Theorem 2] ameliorates the result stated in [22]. Indeed, A. A.
Shkalikov obtained a basis with parentheses under Eqs (1.1) and (1.2) which are
much weaker.

Besides, in many situations, this result presents an important tool in the determining
of the existence of bases. Among this direction we had the idea to exploit this outcome
to study the Gribov operator (see [1], [2], [12] and [15]) originated from Reggeon �eld
theory and constructed as a polynomial in the standard annihilation operator A and
the standard creation operator A∗:

(A∗A)3 + εA∗(A+A∗)A+ ε2(A∗A)3u2 + ...+ εk(A∗A)3uk + ...,

where ε ∈ C and (uk)k∈N is a strictly decreasing sequence with strictly positive terms
such that u0 = 1 and u1 = 1

2 ; while the expressions of the operators A and A∗ are
given by:
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A : D(A) ⊂ B −→ B

φ −→ Aφ(z) =
dφ

dz
(z)

D(A) = {φ ∈ B such that Aφ ∈ B}

and  A∗ : D(A∗) ⊂ B −→ B
φ −→ A∗φ(z) = zφ(z)

D(A∗) = {φ ∈ B such that A∗φ ∈ B},

B =

{
φ : C −→ C entire such that

∫
C
e−|z|2 |φ(z)|2dzdz̄ <∞

}
.

Since {φn := zn
√
n!
}n≥1 is an orthonormal basis of eigenvectors of (A∗A)3 associated

to the eigenvalues {n3}n≥1, then we have∥∥∥∥∥
(
εA∗(A+A∗)A+

∞∑
k=2

εk(A∗A)3uk

)
φn

∥∥∥∥∥ ≤ |ε|
1− |ε|

(1 + 2
√
2)(1 + n3), for |ε| < 1.

(1.3)
It is clear here that Eq. (1.3) does not verify Eq. (1.2). Consequently,
[24, Theorem 2] can not be applied.

Further, if we consider the following integro-di�erential operator initially motivated
by P. J. T. Filippi et al. [14] and deduced from a perturbation method for sound
radiation (see also [8], [11] and [13]):

(I + εK)
−1 d

4φ

dx4
+ ε (I + εK)

−1
K

(
d4

dx4
−
(
d4

dx4

) 1
2

)
φ = λ(ε)φ,

where K is the integral operator with kernel the Hankel function of the �rst kind and
order 0 and ε is a complex number such that |ε| < 1

∥K∥ ; we obtain∥∥∥∥∥
∞∑
k=1

(−1)kεkKk d
2φn

dx2

∥∥∥∥∥ ≤ |ε|
1− |ε|∥K∥

∥K∥ κn4, for |ε| < 1

∥K∥
.

Here (φn)n≥1 denotes the system of eigenvectors of the operator
d4

dx4 : D( d4

dx4 ) ⊂ L2
(
]− L,L[

)
−→ L2

(
]− L,L[

)
φ −→ d4φ

dx4

D( d4

dx4 ) = H2
0

(
]− L,L[

)
∩H4

(
]− L,L[

)
associated to the eigenvalues (λn = κn4)n≥1 (κ > 0). It is easy to check that (φn)n≥1

forms an orthonormal basis of L2
(
]− L,L[

)
.

Hence, Eq. (1.2) is not ful�lled and consequently [24, Theorem 2] can not be applied.
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Among this direction and in order to overcome these bumps, we had the idea to extend
[24, Theorem 2] to an abstract setting. More precisely, we continue the analysis
started in [9] and we focus on the property of bases with parentheses of the analytic
operator

T (ε) := T0 + εT1 + ε2T2 + . . .+ εkTk + . . . , (1.4)

where ε ∈ C, T0 is a closed linear densely de�ned operator on a separable Hilbert
space H with domain D(T0) while T1, T2, . . . are linear operators on H having the
same domain D ⊃ D(T0) and satisfying

∥Tkφ∥ ≤ qk−1(a∥φ∥+ b∥T0φ∥β∥φ∥1−β)

for all φ ∈ D(T0) and for all k ≥ 1, where β ∈]0, 12 [ and a, b and q > 0.
We would like to mention here that the perturbed operator (1.4) was introduced by
B. Sz. Nagy in [23] and considered later in some valuable papers such as [3], [5] and
[8]-[13].
Furthermore, it is interesting to note here that in [9] we derived a precise description
to the localization of the spectrum of the perturbed operator (1.4) and we proved
an asymptotic relation between the eigenvalue-counting functions of T0 and T (ε). In
other words, we claimed that the di�erence between the eigenvalue-counting functions
of T0 and T (ε) is bounded by a constant. This generalization is of great importance.
In fact, it allows us to control the jump of the eigenvalue-counting function of some
analytic operators where the criteria of A. A. Shkalikov [24] can not be applied.

Now, based on the asymptotic relation between the eigenvalue-counting functions of
T0 and T (ε) developed in [9], can we construct a basis with parentheses of root vectors
of the perturbed operator T (ε)? Indeed, in view of [9, P roposition 3.1] the spectrum
of T (ε) is discrete for |ε| < 1

q+βb . So, we consider En = ∪m≥1N(T (ε) − λn(ε))
m the

root linear �nite dimensional subspace whose dimension is called algebraic multiplicity
of the eigenvalue λn(ε). These subspaces are linearly independent and vectors in En

are called root vectors of T (ε). Following some ideas due to A. A. Shkalikov [24], we
prove �rst that the system of root vectors of the perturbed operator T (ε) is complete.
Notice that our result improves Theorem 4.3 stated in [12]. In fact, not only the
assumptions used in [12] are relaxed but also the values that takes |ε| are greater
than the one considered in [12, Theorem 4.3]. Furthermore, it can be considered as
an extension of [24, Lemma 7] to an analytic operator.

Having obtained this aforementioned result, one might seek if it forms a basis with
parentheses. Actually, using the spectral condition developed in [9], we prove that for
|ε| enough small, the system of root vectors of T (ε) forms a basis with parentheses in
H.
We point out here that our result ameliorates [13, Theorem 3.4] since they established
the existence of Riesz basis using a spectral analysis method based on the fact that
the eigenvalues of T0 are with multiplicity one; while we investigate the existence of
basis with parentheses by supposing that the eigenvalues are with �nite multiplicity.
Further, our result might be regarded as an extension of [24, Theorem 2]. In fact, we
guarantee the existence of basis with parentheses for some analytic operators where
Eq. (1.2) considered by A. A. Shkalikov in [24] is not veri�ed.
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The present paper consists of four sections: In section 2, we introduce some basic
de�nitions and auxiliary results connected to the main body of the paper. Section
3 is devoted to prove the completeness of the system of root vectors of T (ε) and
the existence of basis with parentheses of root vectors. In the last section, we apply
the obtained results to a Gribov operator in Bargmann space and to a problem of
radiation of a vibrating structure in a light �uid.

2. Preliminaries

In order to state our main results, let us begin with some de�nitions and preliminary
results that we will need in the sequel. For this, let us consider a Hilbert space H.

De�nition 2.1. [22, p. 16] Let A be a linear operator such that its resolvent set,
ρ(A), is not empty. An operator B is said to be A-compact if its domain D(B)
contains D(A) and if the operator BRλ(A) is compact, where λ ∈ ρ(A). ♢

De�nition 2.2. Let K be a compact operator on H. K is said to belong to
the Carleman-class Cp (p > 0), if the series

∑∞
n=1[sn(

√
K)]p converges, where

sn(
√
K), n = 1, 2, . . . , are the eigenvalues of the operator

√
K∗K. ♢

De�nition 2.3. [22, p. 18] An operator K is said to be of �nite order if it belongs
to the Carleman-class Cp (p > 0). ♢

Markus's theorem is formulated as:

Theorem 2.1. [22, Theorem 4.3] Let A be a normal operator whose resolvent belongs

to the Carleman-class Cp (p > 0), and whose spectrum lies on a �nite number of rays

arg λ = αk(k = 1, . . . , n). If B is A-compact, then the operator G = A + B has a

compact resolvent and the system of its root vectors is complete in H. ♢

Lemma 2.1. [24, Lemma 8] Let F (λ) be a scalar meromorphic function with �nite

order in an angle Λα = {λ : | arg λ| < α} and the poles of F (λ) in this angle lie

inside the strip |Imλ| ≤ h, h > 0. Suppose that |F (λ)| ≤ M on the half-lines

Imλ = ±(h + δ), δ > 0, inside the angle Λα. Then the following estimate holds

inside the strip |Imλ| ≤ h+ δ as Reλ→ ∞ outside an exceptional set of disks D:

ln |F (λ)| ≤ C

(
M + sup

|t−r|≤rη
(n(t+ 1, F )− n(t, F ))

)
, r = |λ|

where n(t, F ) is the pole-counting function for F and the number η can be taken

arbitrarily small. For any d > 0, the exceptional set of disks D can be chosen in

such a way that the total sum of the radii of the disks from D inside the rectangle

|Imλ| ≤ h, t ≤ Reλ ≤ t+1 does not exceed d for any su�ciently large t. The constant
C depends on δ, η, and d (the dependence on d is proportional to ln d) but does not
depend on r and F . ♢

In the remaining part of this section, we introduce the concept of basis (possibly with
parentheses).
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De�nition 2.4. [22, p. 25] A sequence {Vn}∞n=1 of subspaces of a Hilbert space H is
called a basis (of subspaces), if any vector belonging to H can be uniquely represented
as a series

φ =

∞∑
n=1

φn such that φn ∈ Vn. ♢

De�nition 2.5. [22, p. 27] A linearly independent sequence {φn}∞n=1 is called a basis
with parentheses for a Hilbert space H, if there exists a sequence of positive integers
(nk)k such that n0 = 1 and the subspaces spanned by the vectors {φn}nk−1

nk−1
form a

basis for H. ♢

Theorem 2.2. [22, Lemma 6.1] Let {Pk}∞k=1 be a sequence of disjoint projections

(i.e.,
PjPk = δjkPk). If the sequence of subspaces Rk = ImPk (k ∈ N∗) is complete in H,

then it is a basis for H if and only if

sup
n

∥∥∥∥∥
n∑

k=1

Pk

∥∥∥∥∥ <∞. ♢

3. Main results

Let H be a separable Hilbert space and T0 be a linear operator on H verifying the
following hypotheses:

(H1) T0 is self-adjoint, positive and with domain D(T0) in H.

(H2) The resolvent of T0 is compact and its eigenvalues (λn)n verify

λn+p − λn ≥ 1 for some p ∈ N∗.

Let T1, T2, T3, . . . be linear operators on H having the same domain D and satisfying
the hypothesis:

(H3) D ⊃ D(T0) and there exist a, b, q > 0 and β ∈]0, 12 [ such that for all k ≥ 1

∥Tkφ∥ ≤ qk−1(a∥φ∥+ b∥T0φ∥β∥φ∥1−β) for all φ ∈ D(T0).

Let ε be a non zero complex number and consider the eigenvalue problem{
T0φ+ εT1φ+ ε2T2φ+ · · ·+ εkTkφ+ · · · = λφ
φ ∈ D(T0).

Before stating our main results, we shall recall the following theorem.

Theorem 3.1. [12, Theorem 2.1] Suppose that hypotheses (H1) and (H3) hold.

Then for |ε| < q−1, the series
∑

i≥0 ε
iTiφ converges for all φ ∈ D(T0). If T (ε)φ

denotes its limit, then T (ε) is a linear operator with domain D(T0) and for |ε| <
(q + βb)−1, the operator T (ε) is closed. ♢
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3.1. Completeness of the system of root vectors of T (ε)

The aim of this part is to establish the completeness of the system of root vectors of
the perturbed operator T (ε) in H.
To this end, we need �rst to recall the following proposition developed in [9].

Taking into account Theorem 3.1, we denote by B(ε) :=
∑∞

k=1 ε
kTk.

Proposition 3.1. [9, P roposition 3.1] Assume that hypotheses (H1)-(H3) hold.

Then, for |ε| < 1
q+βb , the operator B(ε) is T0-compact. Moreover, the operator T (ε)

is with compact resolvent. ♢

Now, we are ready to state our result.

Theorem 3.2. Assume that hypotheses (H1)-(H3) are veri�ed. Then, for |ε| < 1
q+βb ,

the system of root vectors of the operator T (ε) is complete in H. ♢

Remark 3.1.

(i) Theorem 3.2 extends [24, Lemma 7] to an analytic operator instead of the sum
of two operators. Besides, we have proved that the system of root vectors of
T (ε) is complete even if the criteria of A. A. Shkalikov (Eq. (1.2)) is not satis�ed.

(ii) Theorem 3.2 ameliorates Theorem 4.3 stated in [12]. Indeed, in order to guar-
antee that the operator B(ε) is T0-compact, the authors in [12] assumed that Tk
is T0-compact for all k ≥ 1; whereas Proposition 3.1 ensure this result without
this assumption. On the other hand, the values of |ε| for which the system of
root vectors of the operator T (ε) is complete in H, are greater than the one
considered in [12, Theorem 4.3]. ♢

Proof of Theoerm 3.2.

In view of hypotheses (H1) and (H2), we have T0 is self-adjoint with compact resol-
vent. Further, it follows from hypothesis (H2) that

λn+1 − λ1 = λn+1 − λ(n+1)−p︸ ︷︷ ︸
≥1

+λ(n+1)−p − λ(n+1)−2p︸ ︷︷ ︸
≥1

+ . . .

+λ1+p − λ(n+1)−n
p p(=1)︸ ︷︷ ︸

≥1

≥ n

p
. (3.1)

Thus, Eq. (3.1) yields λn ≥ n−1
p + λ1. So, there exists P > 1 such that the series∑

n≥1(
1
λn

)P is convergent. Consequently, the resolvent of T0 belongs to the Carleman-
class CP . Moreover, in virtue of Proposition 3.1, the operator B(ε) is T0-compact for
|ε| < 1

q+βb . Consequently, Theorem 2.1 implies that for |ε| < 1
q+βb , the system of root

vectors of the operator T (ε) is complete in H.
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Corollary 3.1. Suppose that hypotheses (H1) and (H3) are veri�ed. Moreover,

assume that

λ1−α
n+p − λ1−α

n ≥ 1, where 0 ≤ α < 1. (3.2)

Hence, for β ∈]0, 1 + α−1
2 [ and |ε| < 1

q+βb the system of root vectors of the operator

T (ε) is complete in H. ♢

Proof. It follows from Eq. (3.2) that λ1−α
n ≥ n−1

p + λ1−α
1 . Hence, there exists

P > 1 − α such that the series
∑

n≥1(
1
λn

)P is convergent. As T0 is self-adjoint
with compact resolvent, then the resolvent of T0 belongs to the Carleman-class CP .
Further, due to [9, Corollary 3.1] the operator B(ε) is T0-compact for |ε| < 1

q+βb .
Hence, according to Theorem 2.1, we deduce that the system of root vectors of the
operator T (ε) is complete in H for |ε| < 1

q+βb .

3.2. Basis with parentheses of root vectors of T (ε)

In Theorem 3.2, we have proved that the system of root vectors of the operator T (ε)
is complete. The question that occurs is whether this system forms a basis in H. In
other words, if

Pn,ε =

∫
∂∆n

(λ− T (ε))−1dλ

denotes the spectral projection corresponding to the spectrum of T (ε) inside∆n where
∆n is a bounded closed isolated part of the spectrum of T (ε), then the series

∑
n Pn,εf

is convergent and its sum is it f .
To answer to this question, we shall prove some preliminary results.

Lemma 3.1. Let τ be an arbitrary positive number. If |Imλ| ≥ τ , then for |ε| < 1
q

there exists a positive number N(ε, a, p, q, τ) such that

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
< N(ε, a, p, q, τ). (3.3)

If Reλ ≤ −τ , then for |ε| < 1
q there exists also a positive number N1(ε, a, p, q, τ) such

that
∞∑

n=1

∥B(ε)φn∥2

|λ− λn|2
< N1(ε, a, p, q, τ). (3.4)

♢

Proof. Let n ∈ N∗ and λn be the eigenvalue number n of T0. We have

∥B(ε)φn∥ = ∥(εT1 + ε2T2 + . . .)φn∥

≤
∞∑
i=1

∥εiTiφn∥.
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Then, in view of hypothesis (H3) we obtain

∥B(ε)φn∥ ≤
∞∑
i=1

|ε|iqi−1(a∥φn∥+ b∥T0φn∥β∥φn∥1−β)

≤
∞∑
i=1

|ε|iqi−1(a+ bλβn). (3.5)

Hence, for |ε| < 1
q it follows from Eq. (3.5) that

∥B(ε)φn∥2

|λ− λn|2
≤ |ε|2

(1− |ε|q)2

(
a2

|λ− λn|2
+

2abλβn
|λ− λn|2

+
b2λ2βn

|λ− λn|2

)
. (3.6)

Now, let σ = Reλ and λ = σ ± iτ, where τ > 0. So, there exists k ∈ N∗ such that
λk−1 ≤ σ and λk > σ. Thus, we have

λk − σ > λβk

(
λ1−β
k − σ1−β

)
≥ C1λ

β
k (C1 > 0) (3.7)

and

|λ− λk−1| ≥ ||λ| − λk−1| > |λ|β
(
|λ|1−β − λ1−β

k−1

)
≥ C2λ

β
k−1 (C2 > 0). (3.8)

Then, Eqs (3.7), (3.8) imply that

∞∑
n=1

λ2βn
|λn − σ|2

<
1

C2
1

+
1

C2
2

+
∑

n<k−1

λ2βn
|λn − σ|2

+
∑
n>k

λ2βn
|λn − σ|2

≤ 2

C2
+
∑

n<k−1

λ2βn
|λn − σ|2

+
∑
n>k

λ2βn
|λn − σ|2

, (3.9)

where C := min{C1, C2}. Further, since β ∈]0, 12 [, hence for n < k − 1 we obtain

σ − λn > λk−1 − λn

> (1− β)λβn (λk−1 − λn)
1−β

(λk−1 − λn)
β
λ−β
n

≥ γ1(1− β)λβn (λk−1 − λn)
1−β

, 0 < γ1 < 1 (3.10)

and for n > k we have

λn − σ > λn − λk

> (1− β)λβn (λn − λk)
1−β

(λn − λk)
β
λ−β
n

≥ γ2(1− β)λβn (λn − λk)
1−β

, 0 < γ2 < 1. (3.11)

So, Eqs (3.9), (3.10) and (3.11) yield
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∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+
∑

n<k−1

1

γ21(1− β)2 (λk−1 − λn)
2(1−β)

+
∑
n>k

1

γ22(1− β)2 (λn − λk)
2(1−β)

.

Consequently, if we put γ := min{γ1, γ2}, we obtain
∞∑

n=1

λ2βn
|λn − σ|2

<
2

C2
+
∑

n<k−1

1

γ2(1− β)2 (λk−1 − λn)
2(1−β)

+

∑
n>k

1

γ2(1− β)2 (λn − λk)
2(1−β)

. (3.12)

As λn ≥ n−1
p + λ1, Eq. (3.12) yields

∞∑
n=1

λ2βn
|λ− λn|2

<

∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+
∑

n<k−1

p2(1−β)

γ2(1− β)2 (k − 1− n)
2(1−β)

+
∑
n>k

p2(1−β)

γ2(1− β)2 (n− k)
2(1−β)

≤ 2

C2
+
∑

n<k−1

p2(1−β)

γ2(1− β)2 (k − 1− n)
2(1−β)

+

∞∑
m=1

p2(1−β)

γ2(1− β)2m2(1−β)

<
2

C2
+

2p2(1−β)

γ2(1− β)2

∞∑
m=1

1

m2(1−β)
=: ξ1 <∞.

Moreover, if we use the same argument as above with β
2 we get

∞∑
n=1

λβn
|λ− λn|2

<
2

C2
+

8p2−β

γ2(2− β)2

∞∑
m=1

1

m2−β
=: ξ2 <∞.

Consequently, the series
∑

n
2abλβ

n

|λ−λn|2 and
∑

n
b2λ2β

n

|λ−λn|2 are convergent. So, there exists

ξ > 0 verifying

∞∑
n=1

2abλβn
|λ− λn|2

+

∞∑
n=1

b2λ2βn
|λ− λn|2

< b2ξ1 + 2abξ2 =: ξ. (3.13)

To complete the proof of our result, we follow some ideas due to [24].

• Let us consider |Imλ| ≥ τ . For |ε| < 1
q , it follows from Eqs (3.6) and (3.13) that

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
<

|ε|2

(1− |ε|q)2

(
ξ + a2

∞∑
n=1

1

(λn − σ)2 + τ2

)
.
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On the other hand, hypothesis (H2) implies that

λk+j+sp − σ ≥ s and σ − λk−j−sp−1 ≥ s, where j = 0, . . . , p− 1 and s = 0, 1, . . . .

Hence, for |ε| < 1
q we obtain

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
<

|ε|2

(1− |ε|q)2

ξ + a2p

 k
p−1∑
s=0

1

s2 + τ2
+

∞∑
s=0

1

s2 + τ2

 .

So, for |ε| < 1
q we have

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
<

|ε|2

(1− |ε|q)2

(
ξ + 2pa2

( ∞∑
s=1

1

s2 + τ2
+

1

τ2

))

<
|ε|2

(1− |ε|q)2

(
ξ + 2pa2

(
1

τ2
+

∫ ∞

0

dx

x2 + τ2

))
≤ N(ε, a, p, q, τ),

where

N(ε, a, p, q, τ) :=
|ε|2

(1− |ε|q)2

(
ξ + a2

p

τ

(
π +

2

τ

))
.

• Now, if Reλ ≤ −τ . It follows from hypothesis (H2) that

λ1+j+sp − σ ≥ s− σ ≥ s+ τ, where j = 0, . . . , p− 1 and s = 0, 1, . . . , (3.14)

since λ1+j > 0 and λ1+j+sp−σ ≥ s+λ1+j −σ. So, Eqs (3.6), (3.13) and (3.14) imply
that for |ε| < 1

q we have

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
<

|ε|2

(1− |ε|q)2

(
ξ + a2

∞∑
n=1

1

|σ − λn|2

)

≤ |ε|2

(1− |ε|q)2

(
ξ + pa2

( ∞∑
s=0

1

(τ + s)2

))

<
|ε|2

(1− |ε|q)2

(
ξ + pa2

(∫ ∞

0

dx

(τ + x)2
+

1

τ2

))
≤ N1(ε, a, p, q, τ),

where

N1(ε, a, p, q, τ) :=
|ε|2

(1− |ε|q)2

(
ξ + a2

p

τ

(
1 +

1

τ

))
.

The following proposition holds (see [24]).
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Proposition 3.2. We have

∥B(ε)(λ− T0)
−1∥2 ≤

∞∑
n=1

∥B(ε)φn∥2

|λ− λn|2
.

♢

We denote by Sh := {λ such that |Imλ| < h and Reλ > −h}, with h > 0 (see Figure
1).

h

−h

−h 0

Sh

Figure 1

Proposition 3.3. For small enough |ε|, the spectrum of the operator T (ε) lies in the

half-strip Sh. ♢

Proof. Let λ ∈ C such that |Imλ| ≥ h or Reλ ≤ −h. Since T0 is self-adjoint and
positive, then we have

λ− T (ε) = [I −B(ε)(λ− T0)
−1](λ− T0). (3.15)

Further, combining Eq. (3.3) together with Proposition 3.2, we obtain for |Imλ| ≥ h
and |ε| < 1

q

∥B(ε)(λ− T0)
−1∥2 < N(ε, a, p, q, h). (3.16)

So, for |Imλ| ≥ h and |ε| < 1

q+
√

ξ+a2 p
h (π+ 2

h )
we get

∥B(ε)(λ− T0)
−1∥ < 1.

On the other hand, for Reλ ≤ −h and |ε| < 1
q , Eq. (3.4) and Proposition 3.2 yield

∥B(ε)(λ− T0)
−1∥2 < N1(ε, a, p, q, h). (3.17)

Hence, for Reλ ≤ −h and |ε| < 1

q+
√

ξ+a2 p
h (1+ 1

h )
we obtain

∥B(ε)(λ− T0)
−1∥ < 1.
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Consequently, for

|ε| < min

 1

q +
√
ξ + a2 p

h (π + 2
h )
,

1

q +
√
ξ + a2 p

h (1 +
1
h )


=

1

q +
√
ξ + a2 p

h (π + 2
h )
,

we have

∥B(ε)(λ− T0)
−1∥ < 1 for |Imλ| ≥ h or Reλ ≤ −h.

Hence, I − B(ε)(λ− T0)
−1 is invertible with bounded inverse outside Sh. Then, Eq.

(3.15) implies that λ− T (ε) is invertible with bounded inverse and we obtain

(λ− T (ε))−1 = (λ− T0)
−1[I −B(ε)(λ− T0)

−1]−1. (3.18)

Consequently λ ∈ ρ(T (ε)). So, the spectrum of the operator T (ε) lies in the half-strip
Sh.

These results are of importance to prove the aim of this subsection.

Theorem 3.3. Assume that hypotheses (H1)-(H3) hold. Then, for small enough |ε|,
the system of root vectors of the operator T (ε) forms a basis with parentheses in H.♢

Remark 3.2. (i) Theorem 3.3 guarantees basicity with parentheses not only for
the sum of two operators such as in [24, Theorem 2] but for an analytic operator.
Further, we prove that even if Eq. (1.2) considered in [24] is not veri�ed, we can get
a similar result.
(ii) Theorem 3.3 improves [13, Theorem 3.4] since we prove the existence of a basis
with parentheses of root vectors of T (ε) where the eigenvalues of T0 are with �nite
multiplicity instead of multiplicity one. Indeed, in order to prove the existence of a
Riesz basis related to the eigenvectors of T (ε), the authors in [13] used a spectral
analysis method based on the fact that the eigenvalues of T0 are with multiplicity
one. However, this spectral analysis can not be applied when the eigenvalues of T0
are with �nite multiplicity. ♢

Before going further, we recall the following result stated in [9].

Theorem 3.4. [9, Theorem 4.3.2] Suppose that hypotheses (H1)-(H3) are satis�ed.
Then, for small enough |ε|, the spectrum of the operator T (ε) is constituted by isolated
eigenvalues satisfying

n(r, T (ε)) = n(r, T0) +O(1) i.e., |n(r, T (ε))− n(r, T0)| < C3 as r → ∞,

where n(r, T0) (respectively, n(r, T (ε))) denotes the sum of multiplicities of all

eigenvalues of T0 (respectively, T (ε)) contained in the disk {λ ∈ C such that |λ| < r}
and C3 is a constant. ♢
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Proof of Theorem 3.3.

Let λ ∈ C. In view of Proposition 3.3, the spectrum of T (ε) lies in the half-strip
Sh := {λ such that |Imλ| < h and Reλ > −h}, for |ε| < 1

q+
√

ξ+a2 p
h (π+ 2

h )
. So, let

(∆k)k≥1 be the rectangles bounded by the straight lines Imλ = ±h, Reλ = rk and
Reλ = rk−1, where r0 = −h and rk → ∞ (see Figure 2).

We note here that the numbers rk are chosen in such away that the boundary ∂∆k

of any rectangle ∆k does not pass through the eigenvalues of the operator T (ε).

h

−h

−h 0

Sh

r1 rk−1 rk

∆k∆1

Figure 2

Then, for |ε| < 1

q+
√

ξ+a2 p
h (π+ 2

h )
we have

n∑
k=1

−1

2πi

∫
∂∆k

(λ− T (ε))−1dλ =

n∑
k=1

Pk(ε),

where Pk(ε) designates the spectral projection corresponding to the spectrum of T (ε)
inside ∆k.

To prove our result, it su�ces to show that

sup
n

∣∣∣∣∣
n∑

k=1

−1

2πi

∫
∂∆k

(λ− T (ε))−1dλ

∣∣∣∣∣ <∞. (3.19)

In order to do, so we are going �rst to estimate ∥(λ− T (ε))−1∥ for:

(i) |Imλ| = τ ≥ h and |ε| < 1

q +
√
ξ + a2 p

h (π + 2
h )
.

(ii) Reλ = −τ and |ε| < 1

q +
√
ξ + a2 p

h (1 +
1
h )
.

For this purpose, let us consider λ = σ + iτ .
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(i) In view of Eq. (3.16), we have

∥B(ε)(λ− T0)
−1∥ <

√
N(ε, a, p, q, τ) < 1, (3.20)

where

N(ε, a, p, q, τ) :=
|ε|2

(1− |ε|q)2

(
ξ + a2

p

τ

(
π +

2

τ

))
.

Further,

∥(λ− T0)∥−1 ≤ 1

|Imλ|
=

1

τ
. (3.21)

Then, Eqs (3.20) and (3.21) yield∥∥(λ− T (ε))−1
∥∥ =

∥∥∥(λ− T0)
−1
[
I −B(ε)(λ− T0)

−1
]−1
∥∥∥

≤
∥∥(λ− T0)

−1
∥∥ ∥∥∥[I −B(ε)(λ− T0)

−1
]−1
∥∥∥

≤ 1

τ

(
1−

√
N(ε, a, p, q, τ)

)−1

.

(ii) Eq. (3.17) implies that

∥B(ε)(λ− T0)
−1∥ <

√
N1(ε, a, p, q, τ) < 1, (3.22)

where

N1(ε, a, p, q, τ) :=
|ε|2

(1− |ε|q)2

(
ξ + a2

p

τ

(
1 +

1

τ

))
.

Furthermore, since

∥(λ− T0)
−1∥ ≤ 1

d(λ, σ(T0))

≤ 1

|Reλ− λn|
, λn ∈ σ(T0),

then we get

∥(λ− T0)
−1∥ ≤ 1

| − τ − λn|
, Reλ = −τ

<
1

τ
. (3.23)

Consequently, due to Eqs (3.22) and (3.23) we obtain

∥(λ− T (ε))−1∥ =
∥∥∥(λ− T0)

−1
[
I −B(ε)(λ− T0)

−1
]−1
∥∥∥

≤ 1

τ

(
1−

√
N1(ε, a, p, q, τ)

)−1

.

Now, to prove Eq. (3.19) it remains to show the existence of vertical segments in the
half-strip Sh that tend to in�nity and on which (λ − T (ε))−1 is uniformly bounded
(see [24, p. 292]).
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Let us begin with the boundedness of ∥(λ− T (ε))−1∥. Let f, g ∈ H and consider the
scalar function Fε(λ) de�ned as

Fε(λ) = ⟨(λ− T (ε))−1f, g⟩.

It is easy to see that
∗ Fε(λ) is meromorphic and belongs to the Carleman-class CP , P > 1. In fact, due
to [22, p. 13] the set of the Carleman-class CP is a two-sided ideal of the algebra of
bounded operators L(H). Further, the resolvent of T0 belongs to the Carleman-class
CP (see the proof of Theorem 3.2). Then, in view of Eq. (3.18) the resolvent of T (ε)
belongs to the Carleman-class CP .
∗ The poles of Fε(λ) lie in the strip |Imλ| < h. Indeed, in view of [21, p. 38], the
poles of (λ − T (ε))−1 are exactly the eigenvalues of T (ε) which lies in the half-strip
Sh.

∗ |Fε(λ)| ≤
1

τ

(
1−

√
N(ε, a, p, q, τ)

)−1

, for |Imλ| = τ = h + δ, δ > 0 and |ε| <
1

q +
√
ξ + a2 p

h (π + 2
h )
.

Then, in view of Lemma 2.1 we have

ln |Fε(λ)| ≤ C ′

(
1

τ

(
1−

√
N(ε, a, p, q, τ)

)−1

+ sup
|t−r|≤rη

(n(t+ 1, Fε)− n(t, Fε))

)
,

for |Imλ| ≤ τ and Reλ = rn → ∞ outside an exceptional set of disks D, with r = |λ|.
On the other hand, in virtue of Theorem 3.4 there exists a positive constant W such
that for |ε| < W we have

n(r, T (ε)) = n(r, T0) +O(1). (3.24)

Hence, hypothesis (H2) and Eq. (3.24) imply that for |ε| < W

n(t+ 1, Fε)− n(t, Fε) = n(t+ 1, T (ε))− n(t, T (ε))

= [n(t+ 1, T0) +O(1)]− [n(t, T0) +O(1)]

= O(1) + [n(t+ 1, T0)− n(t, T0)]

≤ O(1) + p = p′.

Consequently, for |ε| < V := min

{
W, 1

q+
√

ξ+a2 p
h (π+ 2

h )

}
we have

|Fε(λ)| ≤ Cε,

where Cε is a constant independent of f, g.
Therefore, for |ε| < V we obtain

∥(λ− T (ε))−1∥ ≤ Cε,
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where |Imλ| ≤ τ and Reλ = rn → ∞ outside an exceptional set of disks D.
Then, for |ε| < V we have∣∣∣∣∣

n∑
k=1

−1

2πi

∫
∂∆k

(λ− T (ε))−1 dλ

∣∣∣∣∣ <∞.

Hence,

sup
n

∣∣∣∣∣
n∑

k=1

−1

2πi

∫
∂∆k

(λ− T (ε))−1 dλ

∣∣∣∣∣ <∞.

Thus,

sup
n

∥∥∥∥∥
n∑

k=1

Pk(ε)

∥∥∥∥∥ <∞.

As a consequence, due to Theorem 2.2, we claim that the family (R(Pk(ε)))k≥1 forms
a basis in H which means that the family of root vectors of T (ε) forms a basis with
parentheses in H.
To complete the proof of our result, we show by a similar way as [24] the existence
of vertical segments that do not pass through the eigenvalues of the operator T (ε).
Indeed, in each rectangle bounded by the straight lines Reλ = n, Reλ = n + 1 and
Imλ = ±h, there are at most p′ points of the eigenvalues λk(ε) for |ε| < W . Hence,
the projection of the disks from D onto the real axis does not �ll the interval [n, n+1].
In fact, it su�ces to choose d < 1

2p′ (where d is the total radii of the disks from D
inside each rectangle). So, there exists a vertical segment in this rectangle that does
not intersect D (see Figure 3). Moreover, the vertical segments can be chosen in
such a way that only points λk(ε) with |Re(λk(ε))−Re(λj(ε))| < d fall between the
neighboring segments.

h

−h

−h 0

Sh

n n+ 1

Figure 3
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Corollary 3.2. Assume that hypotheses (H1) and (H3) and Eq. (3.2) hold. Then,

for β ∈]0, 1 + α−1
2 [ and small enough |ε|, the system of root vectors of the operator

T (ε) forms a basis with parentheses in H. ♢

Proof. Using (H3) and making the same reasoning as the one developed in the proof
of Lemma 3.1, we get for |ε| < 1

q

∥B(ε)φn∥2

|λ− λn|2
≤ |ε|2

(1− |ε|q)2

(
a2

|λ− λn|2
+

2abλβn
|λ− λn|2

+
b2λ2βn

|λ− λn|2

)
.

Now, let σ = Reλ. Then there exists k ∈ N∗ such that λk−1 ≤ σ and λk > σ. Since

λ1−α
n ≥ n−1

p + λ1−α
1 , then λn ≥

(
n−1
p + λ1−α

1

) 1
1−α

. Hence, for n < k − 1 we obtain

σ − λn > λk−1 − λn

≥ λβn(λ
1−β
k−1 − λ1−β

n )

≥ λβn

((
k − 2

p
+ λ1−α

1

) 1−β
1−α

−
(
n− 1

p
+ λ1−α

1

) 1−β
1−α

)
. (3.25)

Equivalently to Eq. (3.25), for n > k we have

λn − σ > λβn

((
n− 1

p
+ λ1−α

1

) 1−β
1−α

−
(
k − 1

p
+ λ1−α

1

) 1−β
1−α

)
. (3.26)

Two cases are presented: If β ∈]0, α], then we have 1−β
1−α ≥ 1. Hence, Eq. (3.25)

implies that

σ − λn > λβn
(k − 1− n)

1−β
1−α

p
1−β
1−α

(3.27)

and Eq. (3.26) yields

λn − σ > λβn
(n− k)

1−β
1−α

p
1−β
1−α

. (3.28)

Consequently, it follows from Eqs (3.9), (3.27) and (3.28) that

∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+ p

2(1−β)
1−α

( ∑
n<k−1

1

(k − 1− n)
2(1−β)
1−α

+

∞∑
n>k

1

(n− k)
2(1−β)
1−α

)

≤ 2

C2
+ p

2(1−β)
1−α

( ∑
n<k−1

1

(k − 1− n)
2(1−β)
1−α

+

∞∑
m=1

1

m
2(1−β)
1−α

)

<
2

C2
+ 2p

2(1−β)
1−α

∞∑
m=1

1

m
2(1−β)
1−α

=: ξ′1 <∞. (3.29)
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Now, if β ∈]α, 1+ α−1
2 [. Then, we have 0 < −α+β

1−α < 1
2 and 1

2 < 1− −α+β
1−α = 1−β

1−α < 1.
So, in view of [22, p. 33] and Eq. (3.25) we get

σ − λn > γ
′
λβn

(
1−β
1−α

)
(k − 1− n)

1−β
1−α

p
1−β
1−α

, 0 < γ
′
< 1. (3.30)

Further, based on [22, p. 33] and Eq. (3.26) we obtain

λn − σ > γ
′′
λβn

(
1−β
1−α

)
(n− k)

1−β
1−α

p
1−β
1−α

, 0 < γ
′′
< 1. (3.31)

Hence, similarly to Eq. (3.29), Eqs (3.9), (3.30) and (3.31) imply that

∞∑
n=1

λ2βn
|λn − σ|2

<
2

C2
+

2p
2(1−β)
1−α

γ
′2
1

(
1−β
1−α

)2 ∞∑
m=1

1

m
2(1−β)
1−α

=: ξ′2 <∞,

where γ
′

1 := min{γ′
, γ

′′}. Consequently, for β ∈]0, 1 + α−1
2 [ we get

∞∑
n=1

λ2βn
|λ− λn|2

<

∞∑
n=1

λ2βn
|σ − λn|2

< max{ξ′1, ξ′2} =: ξ′2.

On the other hand, if we replace β by β
2 we get

∞∑
n=1

λβn
|λ− λn|2

<
2

C2
+

2p
2−β
1−α

γ
′2
1

(
1− β

2

1−α

)2 ∞∑
m=1

1

m
2−β
1−α

=: ξ′3 <∞.

Hence, the series
∑

n
2abλβ

n

|σ−λn|2 and
∑

n
b2λ2β

n

|λ−λn|2 are convergent. So, let ξ′ be a positive

constant satisfying

∞∑
n=1

2abλβn
|λ− λn|2

+

∞∑
n=1

b2λ2βn
|λ− λn|2

< b2ξ′2 + 2abξ′3 =: ξ′.

Furthermore, it follows from [9, Corollary 3.2] that for small enough |ε| and β ∈
]0, 1 + α−1

2 [ we have

n(r, T (ε)) = n(r, T0) +O(1).

To get the desired result, we advise that the rest of the proof is similar to that of
Theorem 3.3.

4. Applications

4.1. Application to a Gribov operator in Bargmann space

We are interested in a family of non self-adjoint operators, said of Gribov, stud-
ied by the specialists of physics of height energy. A representant of this family is
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a combination between the creation operator A∗ and the annihilation operator A
([1], [2] and [15]) given by:

(A∗A)3 + εA∗(A+A∗)A+ ε2(A∗A)3u2 + ...+ εk(A∗A)3uk + ...,

where ε ∈ C and (uk)k∈N is a strictly decreasing sequence with strictly positive terms
such that u0 = 1 and u1 = 1

2 .

We de�ne the Bargmann space B by:

B =

{
φ : C −→ C entire such that

∫
C
e−|z|2 |φ(z)|2dzdz̄ <∞

}
.

This space is equipped with the following scalar product: ⟨., .⟩ : B × B −→ C

(φ,ψ) −→ ⟨φ,ψ⟩ =
∫
C
e−|z|2φ(z)ψ̄(z)dzdz̄

and its associated norm is denoted by ∥.∥.

The expressions of the operators A and A∗ are given by:
A : D(A) ⊂ B −→ B

φ −→ Aφ(z) =
dφ

dz
(z)

D(A) = {φ ∈ B such that Aφ ∈ B}

and  A∗ : D(A∗) ⊂ B −→ B
φ −→ A∗φ(z) = zφ(z)

D(A∗) = {φ ∈ B such that A∗φ ∈ B}.

We consider the problem on E = {φ ∈ B such that φ(0) = 0} and we denote by T0
and H1 the following operators:

T0 : D(T0) ⊂ E −→ E
φ −→ T0φ(z) = (A∗A)3φ(z)

D(T0) = {φ ∈ E such that T0φ ∈ E},

and  H1 : D(H1) ⊂ E −→ E
φ −→ H1φ(z) = A∗(A+A∗)Aφ(z)

D(H1) = {φ ∈ E such that H1φ ∈ E}.

Now, we recall a straightforward, but useful result from [12].

Proposition 4.1. [12, P roposition 6.2] We have the following assertions:
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(i) T0 is a self-adjoint operator.

(ii) The resolvent set of T0 is compact.

(iii) {en(z) = zn
√
n!
}∞1 is a system of eigenvectors associated to the eigenvalues {n3}n≥1

of T0. ♢

Proposition 4.2. The resolvent of the operator T0 belongs to the Carleman-class CP
for any P > 1

3 . ♢

Due to Proposition 4.1, T0 is a self-adjoint operator with compact resolvent in E.
Then, let

T0 =

∞∑
n=1

n3⟨., en⟩en

be its spectral decomposition. So, for a strictly decreasing sequence (uk)k∈N with
strictly positive terms such that u0 = 1 and u1 = 1

2 , the operators (Tuk
0 )k≥0 are

de�ned by: 

Tuk
0 : D(Tuk

0 ) ⊂ E −→ E

φ −→ Tuk
0 φ =

∞∑
n=1

n3uk⟨φ, en⟩en

D(Tuk
0 ) = {φ ∈ E such that

∞∑
n=1

n6uk |⟨φ, en⟩|2 <∞}.

It is easy to check that for all k ≥ 0, D(Tuk
0 ) ⊂ D(T

uk+1

0 ). Then,
⋂

k≥2 D(Tuk
0 ) =

D(Tu2
0 ).

Let D = D(Tu2
0 ) ∩ D(H1), T1, (Tk)k≥2 be the restrictions of H1 and Tuk

0 to D,
respectively. So, the operators (Tk)k≥1 have the same domain D and we have D(T0) ⊂
D.

Proposition 4.3. [12, P roposition 6.3] There exist positive constants a, b, q > 0 and
β ∈

[
1
2 , 1
]
such that for all φ ∈ D(T0) and for all k ≥ 1 we have

∥Tkφ∥ ≤ qk−1(a∥φ∥+ b∥T0φ∥β∥φ∥1−β). ♢

Remark 4.1. In Proposition 4.3, we take q = 1 and a = b = 1 + 2
√
2. ♢

Proposition 4.4. For |ε| < 1, the series
∑

k≥0 ε
kTkφ converges for all φ ∈ D(T0).

If we denote its sum by T (ε)φ, then we de�ne a linear operator T (ε) with domain

D(T0). Also, for |ε| < 1
1+βa , the operator T (ε) is closed. ♢

The main results of this part are formulated as follows:

Proposition 4.5. For |ε| < 1
1+βa and β ∈ [ 12 ,

5
6 [, the system of root vectors of the

operator T (ε) is complete in E. ♢

Proof. Let λn be the eigenvalue number n of (A∗A)3. It is easy to see that

λ
1
3
n+p − λ

1
3
n = (n+ p)− n = p ≥ 1, (where α = 2

3 ). (4.1)
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Consequently, Corollary 3.1, Propositions 4.1, 4.2 and 4.4 and Eq. (4.1) imply that
the system of root vectors of the operator T (ε) is complete in E for |ε| < 1

1+βa .

We have proved that the system of root vectors of the operator T (ε) is complete in
E. Now, it remains to show that it forms a basis with parentheses in E.

Theorem 4.1. For small enough |ε| and β ∈ [ 12 ,
5
6 [, the system of root vectors of the

Gribov operator forms a basis with parentheses in E. ♢

Proof. It su�ces to apply Corollary 3.2, Propositions 4.1 and 4.4 and Eq. (4.1).

Remark 4.2. Theorem 4.1 ameliorates Theorem 4.1 stated in [4]. In fact, we have
proved that for β ∈ [ 12 ,

5
6 [ the system of root vectors of the Gribov operator forms a

basis with parentheses in E; while in [4], the authors showed the existence of a Riesz
basis of �nite-dimensional invariant subspaces for β = 2

3 . ♢

4.2. Application to a problem of radiation of a vibrating

structure in a light �uid

An elastic membrane is stimulated by a harmonic force F (x)e−iωt. It occupies the
domain −L < x < L of the plane z = 0. The two half-spaces z < 0 and z > 0
are �lled with gas. The mechanical parameters of the membrane are E the Young
modulus, ν the Poisson ratio, m the surface density, h the thickness of the membrane

and D:= Eh3

12(1−ν2) the rigidity. The �uid is characterized by ρ0 the density, c the

sound speed and k:= ω
c the wave number.

Now, let us consider the following boundary value problem:(
d4

dx4
− mω2

D

)
u(x)

−iρ0
∫ L

−L

H0(k|x− x′|)

(
ω2

D
− 1

m

(
d4

dx4
−
(
d4

dx4

) 1
2

))
u(x′)dx′ =

F (x)

D
, (4.2)

for all x ∈] − L,L[ where u denotes the displacement of the membrane such that

u(x) =
∂u(x)

∂x
= 0 for x = −L and x = L and H0 is the Hankel function of the �rst

kind and order 0 (see [20, p. 11]).

The problem (4.2) satisfy the following system:(
d4

dx4
− mω2

D

)
u(x) =

1

D
(F (x)− P (x)) for all x ∈]− L,L[,

where

u(x) =
∂u(x)

∂x
= 0 for x = −L and x = L,
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P (x) = lim
η→0+

(p(x, η)− p(x,−η))

and

p(x, z)

= −sgn ziρ0
2

∫ L

−L

H0(k
√
(x− x′)2 + z2)

(
ω2 − D

m

(
d4

dx4
−
(
d4

dx4

) 1
2

))
u(x′)dx′,

for z < 0 or z > 0 such that p designates the acoustic pressure in the �uid.

In order to study this problem, we consider the following operators:

T0 : D(T0) ⊂ L2
(
]− L,L[

)
−→ L2

(
]− L,L[

)
φ −→ T0φ(x) =

d4φ

dx4

D(T0) = H2
0

(
]− L,L[

)
∩H4

(
]− L,L[

)
and 

K : L2
(
]− L,L[

)
−→ L2

(
]− L,L[

)
φ −→ Kφ(x) =

i

2

∫ L

−L

H0(k|x− x′|)φ(x′)dx′.

Now, we recall the following result from [20].

Lemma 4.1. [20, Lemmas 3.1 and 3.2 and Theorem 3.1] The following assertions

hold:

(i) T0 is a self-adjoint operator.

(ii) The injection from D(T0) into L
2
(
]− L,L[

)
is compact.

(iii) The spectrum of T0 is constituted only of point spectrums which are positive,

denumerable and of which the multiplicity is one and which have no �nite limit points

and satis�es

0 < λ1 ≤ λ2 ≤ . . . ≤ λn → +∞.

Further, (
(2n+ 1)π

4L

)4

≤ λn ≤
(
(2n+ 3)π

4L

)4

, i.e., λn ∼+∞

(nπ
2L

)4
.

(iv) The resolvent of the operator T0 belongs to the Carleman-class CP for any P > 1
4 .

♢

Due to Lemma 4.1, T0 is a self-adjoint operator and has a compact resolvent. Then,
let
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T0φ =

∞∑
n=1

λn⟨φ,φn⟩φn

be its spectral decomposition, where λn = κn4 is the nth eigenvalue of T0 associated
to the eigenvector φn(x) = µe

4√λnx + ηe−
4√λnx + θei

4√λnx + δe−i 4√λnx (see [20, p. 7]).
Hence, we de�ne the operator B by:

B = T
1
2
0 : D(B) ⊂ L2

(
]− L,L[

)
−→ L2

(
]− L,L[

)
φ −→ Bφ(x) =

(
d4φ

dx4

) 1
2

D(B) =

{
φ ∈ L2(]− L,L[) such that

∞∑
n=1

λn|⟨φ,φn⟩|2 <∞

}

and we consider the following eigenvalue problem:
Find the values λ(ε) ∈ C for which there is a solution φ ∈ H2

0

(
]−L,L[

)
∩H4

(
]−L,L[

)
,

φ ̸= 0 for the equation

T0φ+ εK(T0 −B)φ = λ(ε)(I + εK)φ (4.3)

where λ = mω2

D and ε = 2ρ0

m .
Note that both λ and φ depend on the value of ε. So, we denote this by λ := λ(ε)
and φ := φ(ε).

For |ε| < 1
∥K∥ , the operator I + εK is invertible. Then, the problem (4.3) becomes:

Find the values λ(ε) ∈ C for which there is a solution φ ∈ H2
0

(
]−L,L[

)
∩H4

(
]−L,L[

)
,

φ ̸= 0 for the equation

(I + εK)−1T0φ+ ε(I + εK)−1K(T0 −B)φ = λ(ε)φ. (4.4)

The problem (4.4) is equivalent to:
Find the values λ(ε) ∈ C for which there is a solution φ ∈ H2

0

(
]−L,L[

)
∩H4

(
]−L,L[

)
,

φ ̸= 0 for the equation(
T0 + εT1 + ε2T2 + . . .+ εnTn + . . .

)
φ = λ(ε)φ,

where Tn := (−1)nKn

(
d4

dx4

) 1
2

, for all n ≥ 1.

Proposition 4.6. [11, P roposition 4.1] The following properties hold:
(i) There exist positive constants a, b, q > 0 and β ∈

[
1
2 , 1
]
such that for all φ ∈ D(T0)

and for all k ≥ 1 we have

∥Tkφ∥ ≤ qk−1(a∥φ∥+ b∥T0φ∥β∥φ∥1−β).

Note that it su�ces to take a = b = q = ∥K∥.
(ii) For |ε| < 1

∥K∥ , the series
∑

k≥0 ε
kTkφ converges for all φ ∈ D(T0). If we denote

its sum by T (ε)φ, we de�ne a linear operator T (ε) with domain D(T0). For |ε| <
1

∥K∥(1+β) , the operator T (ε) is closed. ♢



On the Basis Property of Root Vectors . . . 83

Using the results described above, we can now prove the objective of this part.

Proposition 4.7. For |ε| < 1
∥K∥(1+β) and β ∈ [ 12 ,

7
8 [, the system of root vectors of

the operator T (ε) is complete in L2(]− L,L[). ♢

Proof. Let λn be the eigenvalue number n of T0. We have

λ
1
4
n+p − λ

1
4
n = κ

1
4 ((n+ p)− n) ≥ 1, where α = 3

4 and p ≥ 1

κ
1
4
. (4.5)

Then, in view of Corollary 3.1, Lemma 4.1 and Proposition 4.6 the system of root
vectors of the operator T (ε) is complete in L2(]− L,L[) for |ε| < 1

∥K∥(1+β) .

Theorem 4.2. For small enough |ε| and β ∈ [ 12 ,
7
8 [, the system of root vectors of the

operator T (ε) forms a basis with parentheses in L2(]− L,L[). ♢

Proof. The result follows immediately from Corollary 3.2, Lemma 4.1, Proposition
4.6 and Eq. (4.5).

Remark 4.3. Theorem 4.2 improves [11, Theorem 4.3]. Indeed, in [11] the authors
proved that the system of root vectors of the operator T (ε) forms an unconditional
basis with parentheses in L2(] − L,L[) for β ∈ [ 12 ,

3
4 ], whereas in Theorem 4.2 we

assure the existence of a basis with parentheses of root vectors for β ∈ [ 12 ,
7
8 [. ♢
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