Aleksander MAZURKOW¹ Adam KALINA²

MODELOWANIE TARCIA W FAZIE ROZRUCHU ŁOŻYSKA ŚLIGOWEGO

Zagwarantowanie prawidłowej pracy łożyska wymaga znajomości parametrów pracy zarówno dla fazy rozruchu, stanu ustalonego jak i wybiegu. W publikacji przedstawiono modele łożysk ślizgowych opisujące rozruch, gdy czop się nie obraca ($\omega_I = 0$). Modele te sformułowano wychodząc zarówno z teorii Hertza jak i teorii sprężystości. Obliczone parametry pracy z zastosowaniem teorii Hertza oraz modelu panewki nierozciętej znacznie się różnią. Dla stanu ustalonego, gdy $\omega_J = const$, warunki pracy wyznaczono z równań hydrodynamicznej teorii smarowania. Badania porównawcze wykazują, że przy większych obciążeniach o prawidłowej pracy łożyska mogą decydować naciski w strefie kontaktu czop–panewka a nie maksymalne ciśnienia, czy też maksymalne temperatury oleju.

Słowa kluczowe: łożyska ślizgowe, nośność filmu olejowego, mimośrodowość względna, rozkład naprężeń i odkształceń , czop, panewka

1. WYKAZ WAŻNIEJSZYCH OZNACZEŃ

a — długość promienia elipsy [m], *B* — szerokość panewki, *C_R* — luz promieniowy [m], *C_{URmax}* — maksymalny luz promieniowy z uwzględnieniem odkształcenia [m], *E* – moduł Younga [N/m²], *E* – zastępczy moduł Younga [N/m²], *F* — obciążenie [N], *g_B* — grubość panewki, *h* — wysokość filmu olejowego [m], *r* — współrzędna promieniowa układu odniesienia [m], *p* — ciśnienie w filmie olejowym [N/m²], *R* — promień [m], *R_{B1}* — promień wewnętrzny panewki [m], *R_{B2}* — promień zewnętrzny panewki [m], *T* — temperatura [⁰C], *U_r* — odkształcenie w kierunku promieniowym [m], *U_{rr}* — względne odkształcenie w kierunku promieniowym, *U_φ* — odkształcenie w kierunku obwodowym [m], *U_{φφ}* względne odkształcenie w kierunku obwodowym [m], *x* — współrzędna kartezjańskiego układu odniesienia [m], *y* — współrzędna kartezjańskiego układu odniesienia [m], *z* — współrzędna kartezjańskiego układu odniesienia [m], *z* — lepkość dynamiczna oleju [Pa·s], *v* — liczba

¹Autor do korespondencji: Aleksander Mazurkow, Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, tel.: 178651640, email: almaz@prz.edu.pl

²Adam Kalina, Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, tel.: 177432398, email: akalina@prz.edu.pl

Poissona, σ — naprężenia [N/m²], σ_{rr} — naprężenia w kierunku współrzędnej promieniowej [N/m²]. Indeksy: *B* — panewka stała, *H* — model Hertza, *J* — czop.

2. WPROWADZENIE

Zjawisko powstawania hydrodynamicznego filmu olejowego jako pierwsi opisali N.P. Pietrow [12], B. Towers [16], oraz O. Reynolds [14]. W dalszych latach istotny wpływ w rozwój hydrodynamicznej teorii smarowania wnieśli A. Sommerfeld [15], G. Vogelpohl [17], W. Kaniewski [4]. Aktualnie badania związane są określeniem właściwości hydrodynamicznego filmu olejowego uwzględniającego różne postacie geometryczne szczeliny smarowej [2, 5, 6, 10, 11]. Dla stanu, gdy czop obraca się z prędkością ω_I = const. powierzchnie czopa i panewki są oddzielone warstwą oleju ($h_{min} > h_{lim}$). Na prawidłową pracę łożyska wpływ ma położenie czopa względem panewki. W filmie olejowym ciśnienie w strefie roboczej osiąga wartość $p = p_{max}$, a temperatura $T = T_{max}$.

Badania są prowadzone także dla stanu, gdy czop się nie obraca $\omega_I = 0$. Zamodelowanie warunków pracy w tym przypadku jest złożonym problemem. Podczas rozruchu, gdy czop się nie obraca w strefie kontaktu z panewką występuje złożony stan naprężeń. Materiały konstrukcyjne czopa i panewki mają znacznie różniące się właściwości. Moduły sprężystości wzdłużnej stopów łożyskowych są znacznie mniejsze niż dla stopów stali ($E_B < E_J$), natomiast liczby Poissona dla stopów łożyskowych są większe niż dla stali ($V_B > V_J$). Do rozważań związanych z opisem zjawisk zachodzących w strefie kontaktu stosuje się metody polegające na przyjęciu założeń co do rozkładu naprężeń, czy też rozkładu odkształceń.

W publikacji przedstawiono modele teoretyczne stanu naprężeń i odkształceń panewki nierozciętej oraz model naprężeń i odkształceń Hertza. Uzyskane za pomocą obu modeli wartości maksymalne naprężeń oraz odkształceń porównano.

Zbudowano także charakterystykę na której pokazano jak wpływa obciążenie na parametry pracy łożyska w fazie rozruchu jak i w stanie ustalonym.

3. MODEL NAPRĘŻEŃ ORAZ ODKSZTAŁCEŃ HERTZA

W modelu Hertza (rys.1) w strefie kontaktu powierzchni czopa i panewki [3, 7, 8, 9, 18] zakłada się elipsoidalny rozkład naprężeń:

$$\sigma_{H}(x) = \frac{\sigma_{H\max}}{a} \cdot \sqrt{a^{2} - x^{2}}, \ gdzie - a \le x \le a$$
(1)

Dla przyjętego rozkładu naprężeń wartości maksymalne jak długość odcinka kontaktu (2*a*), maksymalne naprężenia (σ_{max}) i odkształcenia (U_{max}) wyznacza się z równania odkształceń:

$$\frac{E}{\pi} \cdot \iint_{S} \frac{\sigma_{H}(x)}{x} dS = U_{H}(x) + \rho_{z} \cdot x^{2}$$
(2)

gdzie:

• zastępczy moduł Younga wynosi:

$$E' = \frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}$$
(3)

• promień zastępczy wynosi:

$$\rho_z = \frac{1}{2} \cdot \frac{R_{B1} - R_J}{R_{B1} \cdot R_J} \tag{4}$$

Przyjmując do obliczeń jako wielkość zadaną kąt kontaktu powierzchni czopa i panewki (2α) wartości wielkości opisujących parametry pracy łożyska podczas jego rozruchu będą wyrażane wzorami:

$$2a = 2 \cdot R_{B1} \cdot \sin \alpha \tag{5}$$

$$F' = \frac{\left(R_{B1} - R_{J}\right) \cdot R_{B1} \cdot \sin^{2} \alpha}{R_{J} \cdot E'}$$
(6)

$$\sigma_{H\max} = F' \cdot \frac{2}{\pi \cdot a} = \frac{F}{B} \cdot \frac{2}{\pi \cdot a}$$
(7)

$$U_{H\max} = E' \cdot \frac{\sigma_{H\max} \cdot \pi \cdot a}{2} \tag{8}$$

Rys. 1. Geometria, rozkład odkształceń i naprężeń dla modelu Hertza

Dla tak przyjętego modelu obliczeniowego wielkości wynikowe (*F*, σ_{Hmax} , U_{Hmax}) są funkcją geometrii powierzchni kontaktu (ρ_z , *B*) oraz właściwości materiałowych (*E*').

4. MODEL NAPRĘŻEŃ I ODKSZTAŁCEŃ W STREFIE KONTAKTU CZOP PANEWKA NIEROZCIĘTA

Rozkład naprężeń w strefie kontaktu czop – panewka (rys.2) można wyznaczyć także z równań teorii sprężystości przyjmując założenia [7, 9]:

- powierzchnie czopa i panewki są idealnie gładkie i kołowo cylindryczne,
- czop łożyskowy będzie nieodkształcalny, odkształceniom podlegać będzie panewka,
- odkształcenia panewki będą rozpatrywane w zakresie sprężystym,
- deformacje względne w kierunku zmiennej (*r*) opisano (rys.2) zależnością:

$$U_{rr}(\varphi) = \frac{U_{r}(\varphi)}{R_{B2} - R_{B1}} = \frac{U_{r}(\varphi)}{g_{B}}$$
(9)

Dla przyjętych założeń otrzymuje się zależności pozwalające na wyznaczenie grubości, rozkładów naprężeń oraz odkształceń panewki. Wielkości te wynoszą:

$$\sigma_{rr}(\varphi) = \frac{E}{(1+\nu)\cdot(1-2\cdot\nu)} \cdot \left[(1-\nu)\cdot U_{rr}(\varphi) + \nu \cdot U_{\varphi\varphi}(\varphi) \right]$$

dla $|\varphi| \le \alpha$ (10)

$$\sigma_{rr}(\varphi) = 0 \qquad \text{dla} \quad |\varphi| \ge \alpha$$

$$\sigma_{rr}(\varphi = 0) = \sigma_{rr\max} \tag{11}$$

gdzie:

$$-U_{r}(\varphi) = -U_{rr}(\varphi) \cdot g_{B} = -\frac{C_{ur\max} \cdot \cos \varphi - C_{R}}{g_{B}} dla |\varphi| \le \alpha$$

$$-\frac{C_{ur\max} \cdot \cos \alpha - C_{R}}{g_{B}} dla |\varphi| \ge \alpha$$
(12)

$$C_{ur\max} = \frac{C_R}{\cos\alpha} \cdot \frac{1}{\left(\frac{\nu}{1-\nu}\right)^2 \frac{tg\alpha - \alpha}{\pi} + 1}$$
(13)

$$U_{\varphi\varphi}(\varphi) = \begin{cases} \frac{1}{(1-\nu)\cdot\nu\cdot g_{B}} \cdot \left[C_{ur\,max} \cdot \left(\nu^{2} \cdot \cos\varphi + \cos\alpha \cdot (1-2\nu)\right) - C_{R} \cdot (1-\nu)\right] \\ \frac{(1-\nu)}{\nu\cdot g_{B}} \cdot (C_{ur\,max} \cdot \cos\varphi - C_{R}) \, dla \, |\varphi| \ge \alpha \end{cases}$$

$$(14)$$

$$U_{r\max} = C_{ur\max} - C_R \tag{15}$$

$$g_B = R_{B2} - R_{B1} \tag{16}$$

$$C_R = R_{B1} - R_J \tag{17}$$

Rys. 2. Stan odkształceń i naprężeń panewki poprzecznego łożyska ślizgowego

Jak wynika z równań (9 - 18) naprężenia promieniowe ($\sigma_{rr}(\varphi)$) są funkcją stałych materiałowych (*E*, *v*) oraz odkształceń promieniowych i obwodowych (*U_{rr}*, *U_{φφ}*). Odkształcenia (*U_{rr}*, *U_{φφ}*) są funkcją luzu promieniowego (C_R), kąta kontaktu (*α*) i liczby Poissona (*v*). Podobnie przyjmując założenie modelowe, że panewka jest nieodkształcalna a odkształca się tylko czop można wyznaczyć naprężenia i odkształcenia czopa. W tym przypadku wartości długości odcinka kontaktu (*2a*), maksymalnych naprężeń ($\sigma_{rr \max J}, \sigma_{rr \max B}$) i odkształceń ($U_{r\max J}, U_{r\max B}$) czopa i panewki w strefie kontaktu dla materiałów o różnych właściwościach materiałowych (*E*, *v*) przyjmą wartości: $a_J \neq a_B, \sigma_{\max J} \neq \sigma_{\max B}, U_{\max J} \neq U_{\max B}$.

5. PRACA ŁOŻYSKA W WARUNKACH TARCIA PŁYNNEGO

Właściwości poprzecznych łożysk ślizgowych (rys. 3) w warunkach tarcia płynnego, w stanie ustalonym ($\omega_J = const$) można opisać równaniami [1, 4, 5, 6, 7]:

• kształtu szczeliny smarowej:

$$h = 0,5 \cdot D \cdot \psi_{eff} \cdot \left[1 + \varepsilon \cdot \cos(\varphi - \beta)\right], \quad gdzie \quad \psi_{eff} = \frac{C_{eff}}{D}$$
(19)

• rozkładu ciśnienia w szczelinie smarowej:

$$\frac{4}{D^2} \frac{\partial}{\partial \varphi} \left(h^3 \cdot \frac{\partial p}{\partial \varphi} \right) + \frac{\partial}{\partial z} \left(h^3 \cdot \frac{\partial p}{\partial z} \right) = 6 \cdot \eta \cdot \omega_J \cdot \frac{\partial h}{\partial \varphi}$$
(20)

• rozkładu temperatury w szczelinie smarowej:

$$\frac{\tilde{v}_x}{R_J} \cdot \frac{\partial T}{\partial \varphi} + \tilde{v}_z \cdot \frac{\partial T}{\partial z} = \frac{\eta}{\rho \cdot c_p} \cdot \frac{1}{h} \cdot \int_0^h \left[\left[\frac{\partial v_x}{\partial y} \right]^2 + \left[\frac{\partial v_z}{\partial y} \right]^2 \right] dy$$
(21)

• Składowych prędkości przepływu w kierunku osi (x) i (z) są opisane zależnościami:

$$\widetilde{\upsilon}_{x} = \frac{1}{h} \cdot \int_{0}^{h} \left[\frac{1}{2\eta} \frac{\partial p}{\partial x} y(y-h) + \frac{\omega_{J} \cdot R}{h} y \right] dy,$$

$$\widetilde{\upsilon}_{z} = \frac{1}{h} \int_{0}^{h} \left[\frac{1}{2\eta} \frac{\partial p}{\partial z} y(y-h) \right] dy,$$
(22)

• lepkości oleju w funkcji temperatury: $\eta = \eta(T)$

Rys. 3. Geometria oraz rozkład ciśnienia w poprzecznym łożysku ślizgowym zasilanym świeżym olejem z kieszeni smarowej

Rozwiązanie układu równań (18-21) pozwala na wyznaczenie wielkości pozwalających na zbudowanie charakterystyk statycznych i dynamicznych poprzecznego łożyska ślizgowego [1, 5, 6]. Zbiór parametrów określających właściwości łożyska stanowią wielkości:

• mimośrodowość względna

$$\varepsilon = \frac{e}{C_{Ref}} \tag{23}$$

gdzie: $e = \overline{OO_j}$ — mimośrodowość, $C_{Ref} = (R_{B1} - R_J)_{eff}$ — efektywny luz promieniowy, β — kąt położenia linii środków,

• liczba Sommerfelda:

$$S_0 = \frac{F \cdot \psi_{ef}^2}{B \cdot D_{B1} \cdot \eta_{ef} \cdot \omega_J}$$
(24)

• maksymalne ciśnienie filmu olejowego:

$$p_{\max} = p_{\max}(x, y, z), \tag{25}$$

• maksymalna temperaturę filmu olejowego:

$$T_{\max} = T_{\max}(x, y, z), \tag{26}$$

• minimalna wysokość filmu olejowego:

$$h_{\min} = h_{\min}(x, y, z), \tag{27}$$

6. PRZYKŁAD OBLICZENIOWY

Badania zostały przeprowadzone w stanie spoczynku dla modeli Hertza oraz przypadków, gdy odkształca się panewka lub czop łożyskowy. Geometrię powierzchni przedstawiono w tabl. 1. Natomiast praca łożyska w warunkach tarcia płynnego została rozpatrzona dla prędkości $\omega_J = 78,54$ [1/s] ($n_J = 750$ [obr/min]), olej VG150.

	Rodzaj przyjętego do obliczeń modelu	
Wielkość	Model Hertza	Modele w których odkształca się panewka lub czop
R_J – Średnica czopa [m]	209,745·10 ⁻³	209,745.10-3
R_{BI} – Średnica wewnętrzna panewki [m]	210,00.10-3	210,00.10-3
R_{B2} – Średnica zewnętrzna panewki [m]	-	230,00·10 ⁻³
<i>B</i> – Szerokość panewki [m]	315,00.10-3	315,00.10-3
<i>E_J</i> – Moduł Yunga materiału czopa [Pa]	$2,1.10^{11}$	$2,1\cdot 10^{11}$
<i>EB</i> – Moduł Younga materiału panewki [Pa]	0,38.1011	0,38.1011
v _J – Liczba Poissona materiału czopa	0,3	0,3
v _B – Liczba Poissona materiału panewki	0,38	0,38
2α – kąt kontaktu czopa i panewki [rad]	0,04-0,33	0,01-0,23

Tabela. 1. Przykład obliczeniowy

Zbudowano charakterystykę statyczną opisaną przez funkcje: $U_{max}(F)$, $\sigma_{max}(F)$, $p_{max}(F)$, $h_{min}(F)$, $T_{max}(F)$. Funkcje te w formie graficznej przedstawiono na rys. 4.

Rys. 4. Charakterystyka dynamiczna poprzecznego łożyska ślizgowego. Wielkości na rysunku odnoszą się do: 1 – czopa, 2 – panewki nierozciętej, 3 – modelu Hertza, 4 – filmu olejowego hydrodynamicznego

7. ANALIZA PORÓWNAWCZA WYNIKÓW BADAŃ

Analizując przebiegi funkcji przedstawionych na rys. 4 można sformułować wnioski:

- minimalna wysokość filmu olejowego dla $\omega_l = 78,54 [1/s]$ maleje wraz ze wzrostem obciążenia. Dla obciążenia F = 300 [kN] minimalna wysokość wynosi $h_{min} = 82 [\mu m]$,
- maksymalna temperatura filmu olejowego dla $\omega_I = 78,54 \ [1/s]$ rośnie wraz z obciążeniem łożyska. Dla obciążenia $F = 300 \ [kN]$ maksymalna temperatura wynosi $T_{max} = 89 \ [^{o}C]$,
- wartości maksymalnych nacisków podczas rozruchu ($\omega_I = 0$) i maksymalnego ciśnienia w filmie olejowym ($\omega_I = 78,54$ [1/s]) rosną wraz z obciążeniem. Obliczone wartości dla obciążenia F = 300 [kN] wynoszą:

Model tarcia płynnego	Model Hertza	Model odkształcalnej panewki nierozciętej	Model odkształcalnego czopa łożyskowego
$p_{max} = 6,5 MPa$	$\sigma_{Hmax} = 9,0 MPa$	$\sigma_{Brrmax} = 15 MPa$	$\sigma_{Jrrmax} = 25,5 MPa$
-	2a = 133, 1 mm	2a = 95,0 mm	2a = 55,0 mm

Przyjęcie do obliczeń modelu Hertza skutkuje znacznie niższymi wartościami maksymalnych naprężeń w stosunku do modelu odkształcalnej nierozciętej panewki oraz modelu czopa odkształcalnego, wartości maksymalnych odkształceń są funkcjami rosnącymi. W przypadku modelu Hertza oblicza się sumę odkształceń panewki i czopa łożyskowego. Natomiast za pomocą modeli odkształcalnej panewki, czy też odkształcalnego czopa wyznacza się odkształcenia tylko czopa lub panewki. Obliczone wartości maksymalnych odkształceń dla obciążenia F = 300 [kN] wynoszą:

Model tarcia płynnego ØJ = 78,54 [1/s]	Model Hertza ay = 0	Model odkształ- calnej panewki nierozciętej ag = 0	Model odkształ- calnego czopa łożyskowego ag = 0
$h_{min} = 82,3 \ \mu m$	$U_{Hmax} = 25,5 \ \mu m$	$U_{Brmax} = 6,5 \ \mu m$	$U_{Jrmax} = 2,0 \ \mu m$

Suma odkształceń czopa i panewki obliczona ze wzorów Hertza jest większa od sumy odkształceń obliczonych dla modelu panewki nierozciętej.

8. PODSUMOWANIE

Zagwarantowanie prawidłowej pracy łożyska wymaga znajomości parametrów pracy zarówno dla fazy rozruchu, stanu ustalonego jak i wybiegu. W pracy przedstawiono modele łożysk ślizgowych, które sformułowano wychodząc zarówno z teorii sprężystości jak i hydrodynamicznej teorii smarowania. Modele te pozwalają na obliczenie parametrów pracy w początkowej fazie rozruchu oraz stanie równowagi statycznej.

Dla łożyska ślizgowego o średnicy wewnętrznej panewki D = 0.42 m, obciążenia F = 300 kN, prędkości kątowej $\omega_J = 78,54 l/s$ warunki zachowania tarcia płynnego zostały spełnione.

Do badań przyjęto materiały konstrukcyjne czopa i panewki łożyskowej o znacznie różniących się właściwościach:

- stal dla czopa łożyskowego $E_J = 2, 1 \cdot 10^{11}$ Pa, v = 0, 3,
- stop łożyskowy dla panewki łożyskowej $E_J = 0.38 \cdot 10^{11}$ Pa, v = 0.38.

Dla przyjętych modeli obliczeniowych Hertza oraz panewki rozciętej otrzymano znacznie różniące się wartości maksymalnych odkształceń oraz naprężeń. Modele te opisują proces rozruchu łożyska, w którym o prawidłowej pracy decydują dopuszczalne wartości nacisków oraz odkształceń. Stwierdzenie, który model dokładniej odzwierciedla rzeczywiste warunki pracy węzła łożyskowego podczas rozruchu wymaga dodatkowo przeprowadzenia badań eksperymentalnych. Wyniki zostaną przedstawione w kolejnym artykule po przeprowadzeniu badań.

LITERATURA

- [1] DIN 31652, Teil 1, 2, 3: Hydrodynamische Radial Gleitlager im stationärem Betrieb.
- [2] DIN 31653, Teil 1, 2, 3: Hydrodynamische Axial Gleitlager im stationärem Betrieb.
- [3] Huber M.T.: Teoria sprężystości. PWN, Warszawa 1954.
- [4] Kaniewski W.: *Warunki brzegowe diatermicznego filmu smarnego*. Zeszyty naukowe Politechniki Łódzkiej. Zeszyt specjalny, z.14, 1997.
- [5] Kiciński J.: *Dynamika wirników i łożysk ślizgowych*. Instytut Maszyn Przepływowych im. R. Szewalskiego PAN, tom 28. Gdańsk 2005.
- [6] Mazurkow A.: Właściwości statyczne i dynamiczne, metoda projektowania łożysk ślizgowych z panewką pływającą. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2009.
- [7] Mazurkow A.: Łożyskowanie ślizgowe, podstawy teoretyczne, właściwości, uszkodzenia. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2013. ISBN 978-83-7199-6.
- [8] Mazurkow A.: *Wybrane zagadnienia z teorii smarowania łożysk ślizgowych*. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2015 r.
- [9] Paluch M.: Podstawy teorii sprężystości i plastyczności z przykładami. Politechnika Krakowska, Kraków 2006.
- [10] Parszewski Z.: Drgania i dynamika Maszyn. WNT, Warszawa 1982.
- [11] Pietrow N.P.: Inżynieryjny żurnal, 1883: także Izbranyje Truda pod red. Lejbenzona L.S., ANSSSR, 1948.
- [12] Remizow D.: *Plastmasowyje podszipnikowyje uzły*. Izdatielstwo pricharkowskom gosudarstwiennom uniwersitetie, Charkow, 1982.
- [13] Reynolds O.: On the efficiency of belts or straps as communicators of work. Engineer No. 27, 1874.
- [14] Sommerfeld A.: Zur hydrodynamischer Theorie der Schmiermittelreibung. Z. angew. Math. Phys, 50, 97-155, 1904.
- [15] Towers B. Proc. Instn. Mech. Engrs. 58, 1885.
- [16] Vogelpohl G.: "Betriebssichere Gleitlager Berechnungs- verfahren für Konstruktion und Betrieb" Verlag Berlin / Heidelberg/ New York, 1967.
- [17] Zakrzewski M., Zawadzki J., Wytrzymałość materiałów. PWN, Warszawa 1983 r.

DOI: 10.7862/rf.2021.pfe.3

Received: 15.06.2021 Accepted: 28.11.2021