Abstract
This research paper focuses on investigating the influence of input parameters on the coefficient of friction (COF) during incremental sheet forming (ISF) of grade 5 titanium sheets. Titanium alloys are widely used in various industries due to their corrosion resistance and strength to weight ratio. ISF is a flexible and cost effective process for producing complex shapes. The aim of this study was to gain insight into the frictional conditions during ISF that affect formability, surface quality, and overall process performance. The experiments were carried out using a combination of MoS2 lubrication and friction stir rotation-assisted heating. COF was measured using a high precision piezoelectric dynamometer, taking into account axial and horizontal forces. A split-plot design was used and 25 runs were performed to obtain the COF for each run. The results of the study provide valuable information on the relationship between input parameters and COF, contributing to the understanding of the frictional conditions in the ISF.
References
Ajay, C.V. (2020). Parameter optimization in incremental forming of titanium alloy material. Transactions of the Indian Institute of Metals, 73(9), 2403–2413. https://doi.org/10.1007/s12666-020-02044-1
Ambrogio, G., Palumbo, G., Sgambitterra, E., Guglielmi, P., Piccininni, A., Napoli, L.D., Villa, T., & Fragomeni, G. (2018). Experimental investigation of the mechanical performances of titanium cranial prostheses manufactured by super plastic forming and single-point incremental forming. The International Journal of Advanced Manufacturing Technology, 98, 1489–1503. https://doi.org/10.1007/s00170-018-2338-6
Bautista-Monsalve, F., García-Sevilla, F., Miguel, V., Naranjo, J., & Manjabacas, M.C. (2021). A novel machine-learning-based procedure to determine the surface finish quality of titanium alloy parts obtained by heat assisted single point in-cremental forming. Metals, 11(8),1287. https://doi.org/10.3390/met11081287
Cheng, Z., Li, Y., Xu, C., Liu, Y., Ghafoor, S., & Li, F. (2020). Incremental sheet forming towards biomedical implants: A review. Journal of Materials Research and Technology, 9(4), 7225–7251. https://doi.org/10.1016/j.jmrt.2020.04.096
Decultot, N. (2011). Formage incrémental de tôle d’aluminium: Étude du procédé à l’aide de la mesure de champs et identi-fication de modèles de comportement. Universite de Toulouse.
Duflou, J.R., Habraken, A.M., Cao, J., Malhotra, R., Bambach, M., Adams, D., Vanhove, H., Mohammadi, A., & Jeswiet, J. (2017). Single point incremental forming: state-of-the-art and prospects. International Journal of Material Forming, 11, 743–773. https://doi.org/10.1007/s12289-017-1387-y
Durante, M., Formisano, A., Langella, A., & Minutolo, F. (2009). The influence of tool rotation on an incremental forming process. Journal of Materials Processing Technology, 209, 4621–4626. https://doi.org/10.1016/j.jmatprotec.2008.11.028
Hamilton, K.A.S. (2010). Friction and External Surface Roughness in Single Point Incremental Forming: A study of surface friction, contact area and the ‘orange peel’ effect. Master of Applied Sciences Thesis, Queen’s University, Kingston, Ontario, Canada. Retrieved from https://qspace.library.queensu.ca/handle/1974/5425 (accessed on 19 May 2023).
Harfoush, A., Haapala, K.R., & Tabei, A. (2021). Application of artificial intelligence in incremental sheet metal forming: A review. Procedia Manufacturing, 53, 606–617. https://doi.org/10.1016/j.promfg.2021.06.061
Harhash, M., & Palkowski, H. (2021). Incremental sheet forming of steel/polymer/steel sandwich composites. Journal of Materials Research and Technology, 13, 417–430. https://doi.org/10.1016/j.jmrt.2021.04.088
Hussain, G., Gao, L., & Zhang, Z. Y. (2008). Formability evaluation of a pure titanium sheet in the cold incremental forming process. The International Journal of Advanced Manufacturing Technology, 37(9), 920–926. https://doi.org/10.1007/s00170-007-1043-7
Jadhav, S., Goebel, R., Homberg, W., & Kleiner, M. (2003). Process optimization and control for incremental forming sheet metal forming. Proceedings of the Conference of the International Deep Drawing Research Group, Bled, Slovenia, 11-15 May 2003, pp. 165–171.
Kim, M., Lee, H., & Park, N. (2022). Evaluation of deformation for titanium alloy sheet in single point incremental forming based on asymmetric yield function. International Journal of Material Forming, 15(5), 66. https://doi.org/10.1007/s12289-022-01712-5
Kumar, R., Kumar, G., & Singh, A. (2020). An assessment of residual stresses and micro-structure during single point incremental forming of commercially pure titanium used in biomedical applications. Materials Today: Proceedings, 28, 1261–1266. https://doi.org/10.1016/j.matpr.2020.04.147
Li, Y., Liu, Z., Daniel, W.J.T. (Bill), & Meehan, P.A. (2014). Simulation and experimental observations of effect of different contact interfaces on the incremental sheet forming process. Materials and Manufacturing Processes, 29(2), 121–128. https://doi.org/10.1080/10426914.2013.822977
Li, R., Wang, T., & Li, F. (2023). The formability of perforated TA1 sheet in single point incremental forming. Materials, 16(8), 3176. https://doi.org/10.3390/ma16083176
Martins, P. A.F., Bay, N., Skjoedt, M., & Silva, M.B. (2008). Theory of single point incremental forming. CIRP Annals, 57(1), 247–252. https://doi.org/10.1016/j.cirp.2008.03.047
McPhillimy, M., Yakushina, E., & Blackwell, P. (2022). Tailoring titanium sheet metal using laser metal deposition to improve room temperature single-point incremental forming. Materials, 15(17), 5985. https://doi.org/10.3390/ma15175985
Milutinović, M., Lendjel, R., Baloš, S., Zlatanović, D.L., Sevšek, L., & Pepelnjak, T. (2021). Characterisation of geometrical and physical properties of a stainless steel denture framework manufactured by single-point incremental forming. Jour-nal of Materials Research and Technology, 10, 605–623. https://doi.org/10.1016/j.jmrt.2020.12.014
Mishra, S., Yazar, K. U., Kar, A., Lingam, R., Reddy, N. V., Prakash, O., & Suwas, S. (2021). Texture and microstructure evolution during single-point incremental forming of commercially pure titanium. Metallurgical and Materials Trans-actions A, 52(1), 151–166. https://doi.org/10.1007/s11661-020-06000-y
Najm, S.M., & Paniti, I. (2020). Study on effecting parameters of flat and hemispherical end tools in SPIF of aluminium foils. Tehnicki Vjesnik - Technical Gazette, 27(6), 1844–1849. https://doi.org/10.17559/TV-20190513181910
Najm, S.M., & Paniti, I. (2021). Artificial neural network for modeling and investigating the effects of forming tool characteristics on the accuracy and formability of thin aluminum alloy blanks when using SPIF. The International Journal of Advanced Manufacturing Technology, 114(9), 2591–2615. https://doi.org/10.1007/s00170-021-06712-4
Najm, S.M., Paniti, I., Trzepieciński, T., Nama, S.A., Viharos, Z.J., & Jacso, A. (2021). Parametric effects of single point incremental forming on hardness of AA1100 aluminium alloy sheets. Materials, 14(23), 7263. https://doi.org/10.3390/ma14237263
Naranjo, J., Miguel, V., Martínez, A., Coello, J., Manjabacas, M.C., & Valera, J. (2017). Influence of temperature on alloy Ti6Al4V formability during the warm SPIF process. Procedia Engineering, 207, 866–871. https://doi.org/10.1016/j.proeng.2017.10.843
Oleksik, V., Trzepieciński, T., Szpunar, M., Chodoła, Ł., Ficek, D., & Szczęsny, I. (2021). Single-point incremental forming of titanium and titanium alloy sheets. Materials, 14(21), 6372. https://doi.org/10.3390/ma14216372
Patel, D., & Gandhi, A. (2022). A review article on process parameters affecting Incremental Sheet Forming (ISF). Materials Today: Proceedings, 63, 368–375. https://doi.org/10.1016/j.matpr.2022.03.208
Pepelnjak, T., Sevšek, L., Lužanin, O., & Milutinović, M. (2022). Finite element simplifications and simulation reliability in single point incremental forming. Materials, 15(10), 3707. https://doi.org/10.3390/ma15103707
Popp, M., Rusu, G., Racz, S.G., & Oleksik, V. (2021). Common defects of parts manufactured through single point incremental forming. MATEC Web of Conferences, 343, 04007. https://doi.org/10.1051/matecconf/202134304007
Racz, S.G., Breaz, R.E., Tera, M., Gîrjob, C., Biriș, C., Chicea, A.L., & Bologa, O. (2018). Incremental forming of titanium Ti6Al4V alloy for cranioplasty plates—decision-making process and technological approaches. Metals, 8(8), 626. https://doi.org/10.3390/met8080626
Rosca, N., Oleksik, M., & Oleksik, V. (2021). Experimental study regarding PA and PE sheets on single point incremental forming process. MATEC Web of Conferences, 343, 03009. https://doi.org/10.1051/matecconf/202134303009
Saidi, B., Boulila, A., Ayadi, M., & Nasri, R. (2015). Prediction of the friction coefficient of the incremental sheet forming SPIF. Proceedings of the 6th International Congress Design and Modelling of Mechanical Systems CMSM’2015, Hammamet, 23-25 March 2015, Tunisia, pp. 1–2.
Sbayti, M., Bahloul, R., & Belhadjsalah, H. (2020). Efficiency of optimization algorithms on the adjustment of process pa-rameters for geometric accuracy enhancement of denture plate in single point incremental sheet forming. Neural Com-puting and Applications, 32(13), 8829–8846. https://doi.org/10.1007/s00521-019-04354-y
Sbayti, M., Ghiotti, A., Bahloul, R., BelhadjSalah, H., & Bruschi, S. (2022). Effective strategies of metamodeling and opti-mization of hot incremental sheet forming process of Ti6Al4Vartificial hip joint component. Journal of Computational Science, 60, 101595. https://doi.org/10.1016/j.jocs.2022.101595
Shin, J. (2021). Investigation of Incremental Sheet Forming (ISF) using Advanced Numerical and Analytical Approaches. PhD Thesis, University of Michigan, MI, USA. https://doi.org/10.7302/2657
Szewczyk, M., & Szwajka, K. (2023). Assessment of the tribological performance of bio-based lubricants using analysis of variance. Advances in Mechanical and Materials Engineering, 40, 31–38. https://doi.org/10.7862/rm.2023.4
Szpunar, M., Ostrowski, R., Trzepieciński, T., & Kaščák, Ľ. (2021). Central composite design optimisation in single point incremental forming of truncated cones from commercially pure titanium Grade 2 sheet metals. Materials, 14(13), 3634. https://doi.org/10.3390/ma14133634
Titanium. (2023). Titanium Ti-6Al-4V (Grade 5), Annealed. [WWW Document]. Retrieved from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=a0655d261898456b958e5f825ae85390&ckck=1 (ac-cessed on 23 July 2023).
Trzepieciński, T., Szpunar, M., Dzierwa, A., & Żaba, K. (2022a). Investigation of surface roughness in incremental sheet forming of conical drawpieces from pure titanium sheets. Materials, 15(12), 4278. https://doi.org/10.3390/ma15124278
Trzepieciński, T., Szpunar, M., & Ostrowski, R. (2022b). Split-Plot I-Optimal design optimisation of combined oil-based and friction stir rotation-assisted heating in SPIF of Ti-6Al-4V titanium alloy sheet under variable oil pressure. Metals, 12(1), 113. https://doi.org/10.3390/met12010113
Więckowski, W., Adamus, J., Dyner, M., & Motyka, M. (2023). Tribological aspects of sheet titanium forming. Materials, 16(6), 2224. https://doi.org/10.3390/ma16062224
Yoganjaneyulu, G., Vigneshwaran, S., Palanivel, R., Alblawi, A., Rasheed, M. A., & Laubscher, R. F. (2021). Effect of tool rotational speed on the microstructure and associated mechanical properties of incrementally formed commercially pure titanium. Journal of Materials Engineering and Performance, 30(10), 7636–7644. https://doi.org/10.1007/s11665-021-05900-3
Zwolak, M., Szpunar, M., Ostrowski, R., & Trzepieciński, T. (2022). Research on forming parameters optimization of incremental sheet forming process for commercially pure titanium Grade 2 sheets. Archives of Metallurgy and Materials, 67(4), 1411–1418. https://doi.org/10.24425/amm.2022.141068