Properties, applications and thermal investigation of aerogels
PDF

Keywords

aerogel blanket
thermal conductivity
Poensgen apparatus
heat flux

How to Cite

Tychanicz, M., & Smusz, R. (1). Properties, applications and thermal investigation of aerogels. Advances in Mechanical and Materials Engineering, 34(295 (2), 235-246. https://doi.org/10.7862/rm.2017.20

Abstract

Among the variety of products for thermal insulation in industry the aerogel blankets have received significant attention because of their unique properties and wide range of applications. This paper presents the basic properties, fields of application and results of experimental study of Pyrogel XT, which is a type of high temperature aerogel blanket. It is formed of silica aerogel and reinforced with glass fiber batting. In comparison with traditional insulating materials Pyrogel XT is much more efficient thermal insulation with wide temperature range of application (-40÷650ºC). It also has the lowest thermal conductivity of any known solid material. Experimental investigation of thermophysical properties of Pyrogel XT was carried out by using traditional and modern research methods. The traditional method utilized a simplified single-plate Poensgen apparatus. The modern approach was performed on a UnithermTM model 2022 thermal conductivity instrument which uses a guarded heat flow meter method according to ASTM E1530 standard. Results obtained from both devices were compared and analyzed.

https://doi.org/10.7862/rm.2017.20
PDF

References

1. http://www.aerogel.org/?p=992, dostęp 15.09.2016.
2. http://www.aerogel.org/?p=3 dostęp 15.09.2016.
3. Zhao J., Duan Y., Wang X., Wang B.: Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation, Int. J. Heat Mass Transfer 55 (2012) 5196-5204.
4. Yuan B., Ding S., Wang D., Wang G., Li H.: Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming, J. Materials Letters 75 (2012) 204-206.
5. Hoseini A., McCgue C., Andisheh-Tadbir M., Bahrami M.: Aerogel blankets: From mathematical modeling to material characterization and experimental analysis, Int. J. Heat Mass Transfer, 93 (2016) 1124-1131.
6. Furmański P., Wiśniewski T.S., Banaszek J.: Izolacje cieplne. Mechanizmy wymiany ciepła, właściwości cieplne i ich pomiary, OW PW, Warszawa 2006.
7. http://www.aerogel.org/?p=4, dostęp 15.09.2016.
8. Berge A., Johansson P.: Literature Review of High Performance Thermal Insulation, Chalmers University of Technology, Gothenburg, Sweden 2012, Report 2012:2.
9. Yu C-H., Fu Q.J., Tsang S.C.E.: Aerogel materials for insulation in buildings, University of Oxford, UK, Materials for Energy Efficiency and Thermal Comfort in Buildings Chapter 13, Woodhead Publishing Limited 2010.
10. Laskowski J., Milow B., Ratke L.: Aerogel-aerogel composites for normal temperature range thermal insulations, J. Non-Crystalline Solids, 441 (2016) 42-48.
11. He J., Li X., Su D., Ji H., Wang X.: Ultra-low thermal conductivity and high strength of aerogel/fibrous ceramic composites, J. European Ceramic Society, 36 (2016) 1487-1493.
12. Baetens R., Jelle B.P., Gustavsen A.: Aerogel insulation for building applications: a state-of-the-art review, Energy Buildings, 43 (2011) 761-769.
13. Cohen E., Glicksman L.: Thermal properties of silica aerogel formula, J. Heat Transfer, 137 (2015) 081601-1 – 081601-8.
14. Wei G., Liu Y., Zhang X., Yu F., Du X.: Thermal conductivities study on silica aerogel and its composite insulation materials, Int. J. Heat Mass Transfer, 54 (2011) 2355-2366.
15. http://crossroadsci.com/Portals/0/documents/data_sheets/industrial/Aspen_ Aerogels_Pyrogel_XT.pdf
16. Grosicki S., Smusz R., Wilk J., Wolańczyk F.: Wymiana ciepła - eksperymenty. Materiały pomocnicze, OW PRz, Rzeszów 2014.
17. UnithermTM thermophysical instruments: Operating and software manual, Anter Corporation USA, version 2.9, May 2010.