Formation of microcracks near surgical defect in femur: Assessment of ultimate loading conditions
PDF

Keywords

surgical resection
compact bone
J-integral
microcracks
combined loading

How to Cite

Bosiakov, S. M., Alekseev, D. V., Shpileuski, I. E., Silberschmidt, V. V., Stachowicz, F., & Trzepieciński, T. (2016). Formation of microcracks near surgical defect in femur: Assessment of ultimate loading conditions. Advances in Mechanical and Materials Engineering, 33(293 (2), 91-99. https://doi.org/10.7862/rm.2016.8

Abstract

A bone defect of rectangular shape in a femur is considered as a result of a surgical resection of tumor lesions. Based on finite-element calculation of J-integral near the bone defect, ultimate combinations of loads corresponding to formation of microcracks were determined. The loads corresponds to simultaneous actions of own human’s weight, flexion-extension, adduction-abduction and rotation of the femur. Recommendations for the prevention of pathological fractures of the femur with the surgical defect based on the obtained results were formulated.

https://doi.org/10.7862/rm.2016.8
PDF

References

1. Bessho M., Ohnishi I., Matsuyama J., Matsumoto T., Imai K. Nakamura K.: Prediction of strength and strain of the proximal femur by a CT-based finite element method, J. Biomech., 40 (2007) 1745-1753.
2. Dall'Ara E., Luisier B., Schmidt R., Kainberger F., Zysset P., Pahr D.: A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro, Bone, 52 (2013) 27-38.
3. Derikx L.C., van Aken J.B., Janssen D., Snyers A., van der Linden Y.M., Verdonschot N., Tanck E.: The assessment of the risk of fracture in femora with metastatic lesions, J. Bone Joint Surg., British Vol., 94-B (2012) 1135-1142.
4. Dijkstra P.D.S., Oudkerk M., Wiggers T.: Prediction of pathological subtrochanteric fractures due to metastatic lesions, Arch. Orthop. Trauma Surg., 116 (1997) 221-224.
5. Elias J.J., Frassica F.J., Chao E.Y.S.: The open section effect in a long bone with a longitudinal defect - a theoretical modeling study, J. Biomech., 33 (2000) 1517-1522.
6. Harrington K.D.: New trends in the management of the lower extremity metastases, Clinic. Orthop., 169 (1982) 53-61.
7. Hipp J.A., Edgerton B.C., An K.-N., Hayes W.C.: Structural consequences of transcortical holes in long bones loaded in torsion, J. Biomech., 23 (1990) 1261-1268.
8. Hipp J. A., Springfield D.S. Hayes W.C.: Predicting pathologic fracture risk in the management of metastatic bone defects, Clinic. Orthop., 312 (1995) 120-135.
9. Keyak J.H., Rossi S.A.: Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories, J. Biomech., 33 (2000) 209-214.
10. Keyak J.H., Rossi S.A., Jones K.A., Les C.M., Skinner H.B.: Prediction of fracture location in the proximal femur using finite element models, Med. Eng. Phys., 23 (2001) 657-664.
11. Lee T.: Predicting failure load of the femur with simulated osteolytic defects using noninvasive imaging technique in a simplified load case, Annal. Biomed. Eng., 35 (2007) 642-650.
12. Mirels H.: Metastatic disease in long bones: a proposed scoring system for diagnosing impending pathologic fractures, Clinic. Orthop., 249 (1989) 256-264.
13. Ota T., Yamamoto I., Morito R.: Fracture simulation of the femoral bone using the finite-element method: How a fracture initiates and proceeds, J. Bone Min. Metabolism, 17 (1999) 108-112.
14. Schileo E., Taddei F., Cristofolini L., Viceconti M.: Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro, J. Biomech., 41 (2008),356-367.
15. Spruijt S., van der Linden J. C., Dijkstra P.D.S., Wiggers T., Oudkerk M., Snijders C.J., van Keulen F., Verhaar J.A.N., Weinans H., Swierstra B.A.: Prediction of torsional failure in 22 cadaver femora with and without simulated subtrochanteric metastatic defects, Acta Orthopaed., 77 (2006) 474-481.
16. Tanck E., van Aken J.B. van der Linden, Y.M., Schreuder H.W.B., Binkowski M., Huizenga H., Verdonschot N.: Pathological fracture prediction in patients with metastatic lesions can be improved with quantitative computed tomography based computer models, Bone, 45 (2009) 777-783.
17. Tanne T., Sakuda M. Biomechanical and clinical changes of the craniofacial complex from orthopedic maxillary protraction, Angle Orthod., 61 (1991) 145-152.
18. Van der Linden Y.M., Dijkstra P.D.S., Kroon H.M., Lok J.J., Noordijk E.M. Leer J.W.H., Marijnen C.A.M.: Comparative analysis of risk factors for pathological fracture with femoral metastases, J. Bone Joint Surg., British Vol., Vol. 86-B (2004) 566-573.
19. Wedin R., Hansen B. H., Laitinen M., Trovik C., Zaikova O., Bergh P., Kalen A., Schwarz-Lausten G., Vult von Steyern F., Walloe A., Kellerand J., Rudiger J. W.: Complications and survival after surgical treatment of 214 metastatic lesions of the humerus, J. Shold. Elbow Surg., 21 (2012) 1049-1055.
20. Li S.: Cutting of cortical bone tissue: analysis of deformation and fracture process, PhD thesis, Loughborough University, UK, 2013.
21. Letter to editor: ISB recomendation on definitions of joint coordinate sytem of various joints for the reporting of human joint motion - part I: ankle, hip, and spine, J. Biomech., 35 (2002) 543-548.
22. Yoshioka Y., Siu D., Cooke D.V., Chir B.: The anatomy and functional axes of the femur, J. Bone Join. Surg., 69-A, No. 6 (1987) 873-880.