Effect of Heating and Cooling of Aluminium-Based Fibre-Metal Laminates on Their Tensile Strength


fibre metal laminates
mechanical properties
tensile strength
thermal shocks

How to Cite

Boczar, K., Wasłowicz, K., Kubit, A., Chodorowska, D., & Fejkiel, R. (2023). Effect of Heating and Cooling of Aluminium-Based Fibre-Metal Laminates on Their Tensile Strength . Advances in Mechanical and Materials Engineering, 40(1), 149-157. https://doi.org/10.7862/rm.2023.15


The widespread use of composite materials in the construction of machines encourages to better understand their properties and the impact of various external factors on these properties. Fibre metal laminates (FMLs) consist of alternating layers of metal and a polymer matrix laminate reinforced with continuous fibres. The aim of this work was to investigate the effect of cyclical temperature changes and thermal shocks (heating the sample to a high temperature in a short time) on the strength properties of FMLs from AW-1050A aluminium sheet, glass fibre fabric and carbon fibre fabric. The research concerns the determination of how cyclical temperature changes affect the tensile strengths properties of FMLs. The results indicate a small effect of the cycles on the tensile strength of the composites. The composites with glass fibre reinforced laminate also showed high resistance to delamination, moreover, the samples did not delaminate even after they were broken. The carbon fibre reinforced laminate composites showed a tendency to delaminate after heat treatment.



Alderiesten, A. (2019). Fatigue in fibre metal laminates: The interplay between fatigue in metals and fatigue in composites. Fatigue & Fracture of Engineering Materials & Structures, 42(11), 2414-2421. https://doi.org/10.1111/ffe.12995

AW-1050A. (2023). Retrieved from https://www.kronosedm.pl/aluminium-a1-aw-1050a/

Bieniaś, J. (2018). Kształtowanie stanu powierzchni rozdziału metal-kompozyt w laminatach metalowo-włóknistych z włóknami węglowymi. Politechnika Lubelska.

Chandrasekar, M., Ishak, M.R., Jawaid, M., Leman, Z., & Sapuan, S.M. (2017). An experimental review on the mechanical properties and hygrothermal behaviour of fibre metal laminates. Journal of Reinforced Plastics and Composites, 36(1), 72-82. https://doi.org/10.1177/0731684416668260

Chen, Y., Yang, Y., Wang, Z., Wang, H., Li, J., & Hua, L. (2023). Accurate simulation on the forming and failure processes of fiber metal laminates: A review. International Journal of Lightweight Materials and Manufacture, 6(3), 344-356. https://doi.org/10.1016/j.ijlmm.2023.02.003

Costa, R.D.F.S., Sales-Contini, R.C.M., Silva, F.J.G., Sebbe, N., & Jesus, A.M.P. A. (2023). Critical Review on Fiber Metal Laminates (FML): From Manufacturing to Sustainable Processing. Metals, 13, 638. https://doi.org/10.3390/met13040638

Dobrzanski, L.A. (2016). Podstawy nauki o materiałach i metaloznawstwo. Wydawnictwa Naukowo-Techniczne.

Etri, H.E., Korkmaz, M.E., Gupta, M.K., Gunay, M., & Xu, J. (2022). A state-of-the-art review on mechanical characteristics of different fiber metal laminates for aerospace and structural applications. International Journal of Advanced Manufacturing Technology, 123, 2965–2991. https://doi.org/10.1007/s00170-022-10277-1

Fontes, A., & Shadmehri, F. (2023). Data-driven failure prediction of Fiber-Reinforced Polymer composite materials. Engineering Applications of Artificial Intelligence, 120, 105834. https://doi.org/10.1016/j.engappai.2023.105834

Hamill, L., Hofann, D.C., & Nutt, S. (2018). Galvanic Corrosion and Mechanical Behavior of Fiber Metal Laminates of Metallic Glass and Carbon Fiber Composites. Advanced Engineering Materials, 20(2), 1700711. https://doi.org/10.1002/adem.201700711

Kabir, S., Shahed, C.A., Ador M.S.H., Choudhyry, I.A., & Ahmad, F. (2023). Review of the developments in composite materials over the last 15 years. Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/B978-0-323-96020-5.00044-3

Kalfountzos, C.D., Bikakis, G.S.E., & Theotokoglou, E.E. (2022). Postbuckling and secondary buckling of rectangular fiber-metal laminates and glass-fiber reinforced composites under uniaxial compression. Engineering Structures, 267, 114663. https://doi.org/10.1016/j.engstruct.2022.114663

Kumar, K.A., Prabu, R., & Arulraj, R. (2022). Development and characterization of fiber metal laminates (FML) using aluminium and Kevlar fibre for automobile applications. AIP Conference Proceedings 2413(1), 050002. https://doi.org/10.1063/5.0091668

Kumaran, D., Antony, J.M.; Lokeshwaran, G., Srinivasan, P.S., Vigneshwar, S.R.M., Ramnath, B.V., & Kumar, R.S. (2023). Investigation of flexural, inter delamination and impact behaviour of fiber metal laminate composite. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.624

Li, K., Qin, Q., Cui, T., Han, Q., Peng, J., Sha, Z., & Zhang, W. (2023). Soft impact of GLARE fiber metal laminates. International Journal of Impact Engineering, 178, 104607. https://doi.org/10.1016/j.ijimpeng.2023.104607

Mohammad-Zaheri, F., Mohammadi, B., & Taheri-Behrooz, F. (2023). Prediction of stress distribution and stiffness degradation in fiber metal laminates containing matrix cracking. Composite Structures, 311, 116820. https://doi.org/10.1016/j.compstruct.2023.116820

Pai, A., Kini, C.R. Hegde, S., & Satish, S.B. (2023). Thin fiber metal laminates comprising functionally graded ballistic-grade fabrics exposed to mechanical and damping characterization. Thin-Walled Structures, 185, 110628. https://doi.org/10.1016/j.tws.2023.110628

Raheem, A., & Subbaya, K.M. (2023). Performance evaluation of hybrid polymer composite materials in marine applications: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.346

Sarfraz, M.S., Hong, H., & Kim, S.S. (2021). Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Composite Structures, 266, 113864. https://doi.org/10.1016/j.compstruct.2021.113864

Sun, J., Xu, S., Lu, G., Ruan, D., & Wang, Q. (2023). Mechanical response of fibre metal laminates (FMLs) under low to intermediate strain rate tension. Composite Structures, 305, 116493. https://doi.org/10.1016/j.compstruct.2022.116493

Verma, E., Gajera, H., Ramani, D., Bist, N., Sircar, A. (2022). Corrosion in the light of electrochemistry. Materials Today: Proceedings, 62, 7057-7061. https://doi.org/10.1016/j.matpr.2022.01.138

Vieira, L.M.G., Dobah, Y., dos Santos, J.C., Panzera, T.H., Campos Rubio, J.C., & Scarpa, F. (2022). Impact Properties of Novel Natural Fibre Metal Laminated Composite Materials. Applied Sciences, 12, 1869. https://doi.org/10.3390/app12041869

Yelamanchi, B., MacDonald, E., Gonzalez-Canche, N.G., Carrillo, J.G., & Cortes, P. (2020). The Mechanical Properties of Fiber Metal Laminates Based on 3D Printed Composites. Materials, 13, 5264. https://doi.org/10.3390/ma13225264