A Review of Enhancement of Thermal Performance of Flat Plate Solar Collectors through Nanofluid Implementation


solar collector
flat plate
thermal performance
solar energy

How to Cite

Ali, Z. H. M., & Hussien, A. M. (2023). A Review of Enhancement of Thermal Performance of Flat Plate Solar Collectors through Nanofluid Implementation. Advances in Mechanical and Materials Engineering, 40(1), 139-148. https://doi.org/10.7862/rm.2023.14


Nanofluids have found widespread practical applications in heat transfer, including cooling oils for diverse uses like automobile radiators, solar and nuclear power systems, biomedical devices, ventilation, heating, air conditioning, refrigeration, engine cooling, and transformers. Extensive scientific studies have investigated the impact of exotic fluids when combined with traditional heat transfer fluids, revealing that this combination enhances heat transfer performance beyond that of conventional working fluids. Collectively, these studies demonstrate the impressive heat transfer abilities of nanofluids. To optimize the efficiency of flat plate solar collectors, a comprehensive approach integrating theory and experimentation is essential. The results of such research highlight that increasing both the mass flow rate and concentration of nanofluids can lead to significant efficiency improvements, with potential enhancements ranging from 20% to 85%.



Alawi, O.A., Kamar, H.M., Mallah, A.R., Mohammed, H.A., Sabrudin, M.A.S., Newaz, K.M.S., Najafi, G., & Yaseen, Z.M. (2021). Experimental and theoretical analysis of energy efficiency in a flat plate solar collector using monolayer graphene nanofluids. Sustainability, 13, 5416. https://doi.org/10.3390/su13105416

Ali, H. H. M., Hussein, A. M., Allami, K. M. H., & Mohamad, B. (2023). Evaluation of shell and tube heat exchanger performance by using ZnO/water nanofluids. Journal of Harbin Institute of Technology (New Series), 30, 1–13 https://doi.org/10.11916/j.issn.1005-9113.2023001

Alim, M. A., Abdin, Z., Saidur, R., Hepbasli, A., Khairul, M. A., & Rahim, N. A. (2013). Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids. Energy and Buildings, 66, 289–296. https://doi.org/10.1016/j.enbuild.2013.07.027

Alklaibi, A. M., Sundar, L. S., & Sousa, A. C. M. (2021). Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector. International Communications in Heat Mass Transfer, 120, 105057. https://doi.org/10.1016/j.icheatmasstransfer.2020.105057

Berkache, A., Amroune, S., Golbaf, A., & Mohamad, B. (2022). Experimental and numerical investigations of a turbulent boundary layer under variable temperature gradients. Journal of the Serbian Society for Computational Mechanics, 16(1), 1–15. https://doi.org/10.24874/jsscm.2022.16.01.01

Chaji, H., Ajabshirchi, Y., Esmaeilzadeh, E., Heris, S. Z., Hedayatizadeh, M., & Kahani, M. (2013). Experimental study on thermal efficiency of flat plate solar collector using TiO2/water nanofluid. Modern Applied Science, 7(10), 60–69. https://doi.org/10.5539/mas.v7n10p60

Choudhary, S., Sachdeva, A., & Kumar, P. (2020). Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector. Renewable Energy, 147, 1801–1814, https://doi.org/10.1016/j.renene.2019.09.126

Dutta, S., Biswas, A. (2019). A numerical investigation of natural convection heat transfer of copper-water nanofluids in a rectotrapezoidal enclosure heated uniformly from the bottom wall. Mathematical Modelling of Engineering Problems, 6, 105–114. https://doi.org/10.18280/mmep.06011

Dutta, S., Goswami, N., Biswas, A. K., & Pati, S. (2019). Numerical investigation of magnetohydrodynamic natural convection heat transfer and entropy generation in a rhombic enclosure filled with Cu-water nanofluid. International Journal of Heat and Mass Transfer, 136, 777–798. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.024

Dutta, S., Pati, S., & Baranyi, L. (2021). Numerical analysis of magnetohydrodynamic natural convection in a nanofluid filled quadrantal enclosure. Case Studies in Thermal Engineering, 28, 101507. https://doi.org/10.1016/j.csite.2021.101507

Farajzadeh, E., Movahed, S., & Hosseini, R. (2018). Experimental and numerical investigations on the effect of Al2O3/TiO2–H2O nanofluids on thermal efficiency of the flat plate solar collector. Renewable Energy, 118, 122–130. https://doi.org/10.1016/j.renene.2017.10.102

Farhana, K., Kadirgama, K., Noor, M. M., Rahman, M. M., Ramasamy, D., & Mahamude, A. S. F. (2019). CFD modelling of different properties of nanofluids in header and riser tube of flat plate solar collector. IOP Conference Series: Materials Science and Engineering, 469(1), 012041. https://doi.org/10.1088/1757-899X/469/1/012041

Hawwash, A. A., Abdel Rahman, A. K., Nada, S. A., & Ookawara, S. (2018). Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids. Applied Thermal Engineering, 130, 363–374. https://doi.org/10.1016/j.applthermaleng.2017.11.027

Hussein, A. K., Ashorynejad, H. R., Shikholeslami, M., & Sivasankaran, S. (2014). Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in the presence of a magnetic field. Nu-clear Engineering and Design, 268, 10–17. https://doi.org/10.1016/j.nucengdes.2013.11.072

Jouybari, H. J., Saedodin, S., Zamzamian, A., Nimvari, M. E., & Wongwises, S. (2017). Effects of porous material and nano-particles on the thermal performance of a flat plate solar collector: An experimental study. Renewable Energy, 114, 1407–1418. https://doi.org/10.1016/j.renene.2017.07.008

Kalogirou, S. (2004). Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30, 231–295. https://doi.org/10.1016/j.pecs.2004.02.001

Keerthi, M. L., Gireesha, B. J., & Sowmya, G. (2022). Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid. International Communications in Heat and Mass Transfer, 138, 106341. https://doi.org/10.1016/j.icheatmasstransfer.2022.106341

Kiliç, F., Menlik, T., & Sözen, A. (2018). Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Solar Energy, 164, 101–108. https://doi.org/10.1016/j.solener.2018.02.002

Meibodi, S. S., Kianifar, A., Niazmand, H., Mahian, O., & Wongwises, S. (2015). Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG-water nanofluids. International Communications in Heat and Mass Transfer, 65, 71–75. https://doi.org/10.1016/j.icheatmasstransfer.2015.02.011

Michael, J. J., & Iniyan, S., (2015). Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Conversion and Management, 95, 160–169. https://doi.org/10.1016/j.enconman.2015.02.017

Moghadam, A. J., Farzane-Gord, M., Sajadi, M., & Hoseyn-Zadeh, M. (2014). Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Experimental Thermal and Fluid Science, 58, 9–14. https://doi.org/10.1016/j.expthermflusci.2014.06.014

Mohamad, B., & Zelentsov, A. (2022). Methode hybride pour la conception et l’optimisation d’un echappement silencieux de voitures de course formula. Canadian Acoustics / Acoustique canadienne, 50(4), 5-11.

Nasrin, R., & Alim, M. A. (2014). Semi-empirical relation for forced convective analysis through a solar collector. Solar Energy, 105, 455–467. https://doi.org/10.1016/j.solener.2014.03.035

Natarajan, E., & Sathish R. (2009). Role of nanofluids in solar water heater. International Journal of Advanced Manufacturing Technology, 43, 6082–6087. https://doi.org/10.1007/s00170-008-1876-8

Okonkwo, E. C., Wole-Osho, I., Kavaz, D., Abid, M., & Al-Ansari, T. (2020). Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids. Sustainable Energy Technology and Assessments, 37, 100636. https://doi.org/10.1016/j.seta.2020.100636

Qader, F., Hussein, A., Danook, S., Mohamad, B., & Khaleel, O. (2023). Enhancement of Double-Pipe Heat Exchanger Effectiveness by Using Porous Media and TiO2 Water. CFD Letters, 15(4), 31–42. https://doi.org/10.37934/cfdl.15.4.3142

Said, Z., Saidur, R., Sabiha, M. A., Rahim, N. A., & Anisur, M. R. (2015). Thermophysical properties of single wall carbon nanotubes and its effect on exergy efficiency of a flat plate solar collector. Solar Energy, 115, 757–769. https://doi.org/10.1016/j.solener.2015.02.037

Sharafeldin M. A., & Gróf, G. (2018). Experimental investigation of flat plate solar collector using CeO2-water nanofluid. Energy Conversion and Management, 155, 32–41. https://doi.org/10.1016/j.enconman.2017.10.070

Shojaeizadeh, E., Veysi, F., & Kamandi, A. (2015). Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector. Energy and Buildings, 101, 12–23. https://doi.org/10.1016/j.enbuild.2015.04.048

Sundar, L. S. Singh, M. K. Punnaiah, V. Sousa, A. C. M. (2018). Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts. Renewable Energy, 119, 820–833. https://doi.org/10.1016/j.renene.2017.10.056

Tong, Y., Lee, H., Kang, W., & Cho, H. (2019). Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Applied Thermal Engineering, 159, 113959. https://doi.org/10.1016/j.applthermaleng.2019.113959

Vakili, M., Hosseinalipour, S. M., Delfani, S., Khosrojerdi, S., & Karami, M. (2016). Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. Solar Energy, 131, 119–130. https://doi.org/10.1016/j.solener.2016.02.034

Verma, S. K., Tiwari, A. K., & Chauhan, D. S. (2016). Performance augmentation in flat plate solar collector using MgO/water nanofluid. Energy Conversion and Management, 124, 607–617. https://doi.org/10.1016/j.enconman.2016.07.007

Verma, S. K., Tiwari, A. K., & Chauhan, D. S. (2017). Experimental evaluation of flat plate solar collector using nanofluids. Energy Conversion and Management, 134, 103–115. https://doi.org/10.1016/j.enconman.2016.12.037

Vijayakumaar, S. C. R., Shankar, L., & Babu, K. (2013). Effect of CNT-H2O nanofluid on the performance of solar flat plate collector-an experimental investigation. Proceedings of the International Conference on Advanced Nanomaterials & Emerging Engineering Technologies ICANMEET 2013, India, pp. 197–199. https://doi.org/10.1109/ICANMEET.2013.6609275

Yousefi, T., Shojaeizadeh, E., Veysi, F., & Zinadini, S. (2012). An experimental investigation on the effect of pH variation of MWCNT-H 2O nanofluid on the efficiency of a flat-plate solar collector. Solar Energy, 86(2), 771–779. https://doi.org/10.1016/j.solener.2011.12.003

Zamzamian, A., KeyanpourRad, M., KianiNeyestani, M., & Jamal-Abad, MAZZ. T. (2014). An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors. Renewable Energy, 71, 658–664. https://doi.org/10.1016/j.renene.2014.06.003