Abstract
Aluminum alloys are widely used in different engineering application areas, such as aerospace, automotive, and marine industries. However, their properties need some improvement in order to enlarge their application area. Thus, the objective of the study was to improve the physical and mechanical properties of Al6061 aluminum alloy by reinforcing it with nano-Al2O3 and micro-quartz particles. The investigation primarily was focused on studying the impact of quartz particles on the mechanical and physical properties of an Al6061/nano Al2O3/quartz hybrid composite. The hybrid composite was developed using a stir casting technique, by varying the weight percentage of quartz particles at 3%, 6%, and 9%, while maintaining a constant weight percentage of nano-Al2O3 at 3.5%. To evaluate the composite's properties, test samples were prepared according to ASTM E9-09 and ASTM E23 standards for hardness, compressive strength, creep, and impact energy absorption, respectively. The results of the investigation demonstrate that, with the addition of 9 wt.% of micro-quartz particles and 3.5 wt.% of nano-Al2O3 nanoparticles, all mechanical and physical properties of the matrix were improved, except for the impact strength. Based on these results, the developed hybrid composite material can be recommended for light weight automotive spare parts such as brakes and clutch discs.
References
Alnaqi, A. A., Kosarieh, S., Barton, D. C., Brooks, P. C., & Shrestha, S. (2016). Material characterisation of lightweight disc brake rotors. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(7), 555-565. https://doi.org/10.1177/1464420716638683
AnandhaKumar, C., Gopi, S., Kumar, S. S., & Mohan, D. G. (2021). Mechanical, metallurgical and tribological properties of friction stir processed aluminium alloy 6061 hybrid surface composites. Surface Topography: Metrology and Properties, 9(4), Article 045019. https://doi.org/10.1088/2051-672X/ac3120
Arif, S., Aziz, T., & Ansari, A. H. (2018). Characterization and mechanical behaviour of zirconia reinforced aluminium matrix nanocomposites fabricated through powder metallurgy technique. Materials Focus, 7(6), 1-5. https://doi.org/10.1166/mat.2018.161
Arunachalam, R., Krishnan, P. K. & Muraliraja, R. (2019). A review on the pro-duction of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. Journal of Manufacturing Processes, 42, 213-245. https://doi.org/10.1016/j.jmapro.2019.04.017
Baradeswaran A., & Perumal, A. E. (2013). Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Composites Part B: Engineering, 54, 146-152. https://doi.org/10.1016/j.compositesb.2013.05.012
Baradeswaran, A., Elayaperumal, A., & Issac, R. F. (2013). A statistical analysis of optimization of wear behaviour of Al-Al2O3 composites using Taguchi technique. Procedia Engineering, 64, 973-982. https://doi.org/10.1016/j.proeng.2013.09.174
Bhat, A., Kakandikar, G., Deshpande, A., Kulkarni, A., & Thakur, D. (2021). Characterization of Al2O3 reinforced Al 6061 metal matrix composite. Materials Science, Engineering and applications, 1(1), 11-20. https://doi.org/10.21595/msea.2021.22028
Bodunrin, M. O., Alaneme, K. K., & Chown, L. H. (2015). Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Journal of Materials Research and Technology, 4(4), 434-445. https://doi.org/10.1016/j.jmrt.2015.05.003
Breval, E. (1995). Synthesis routes to metal matrix composites with specific properties: A review. Composites Engineering, 5(9), 1127-1133. https://doi.org/10.1016/0961-9526(95)00048-R
Caracostas, C. A., Chiou, W., Fine, M. E., Cheng, H. S. (1997). Tribological properties of aluminum alloy matrix TiB2 composite prepared by in situ processing. Metallurgical and Materials Transactions A, 28, 491-502. https://doi.org/10.1007/s11661-997-0150-2
Chen P., & Hoshi, T. (1992). High-performance machining of SiC whisker-reinforced aluminium composite by self-propelled rotary tools. CIRP Annals, 41(1), 59-62. https://doi.org/10.1016/S0007-8506(07)61152-4
Das, D. K., Mishra, P. C., Singh, S., & Pattanaik, S. (2014). Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites - a review. International Journal of Mechanical and Materials Engineering, 9, Article 6. https://doi.org/10.1186/s40712-014-0006-7
Ezatpour, H. R., Sajjadi, S. A., Sabzevar, M. H. & Huang, Y. (2014). Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Materials & Design, 55, 921-928. https://doi.org/10.1016/j.matdes.2013.10.060
Gangwar, S., Kukshal, V., Patnaik, A., & Singh, T. (2013). Mechanical and fracture toughness behavior of TiO2-filled A384 metal alloy composites. Science and Engineering of Composite Materials, 20(3), 209-220. https://doi.org/10.1515/secm-2012-0143
Gnaneswaran, P., Hariharan, V., Chelledurai, S. J. S., Rajeshkumar, G., Gnanasekaran, S., Sivananthan, S., & Debtera, B. (2022). Investigation on mechanical and wear behaviors of LM6 aluminium alloy-based hybrid metal matrix composites using stir casting process. Advances in Materials Science and Engineering, 2022, Article 4116843. https://doi.org/10.1155/2022/4116843
Jino, R. Pugazhenthi, R., Ashok, R., Ilango, K. G., Chakravarthy, T., & Kalyana, P. R. (2017). Enhancement of mechanical properties of Luffa fiber/epoxy composite using B4C. Journal of Advanced Microscopy Research, 12(2), 89-91. https://doi.org/10.1166/jamr.2017.1324
Kala, H., Mer, K. K. S., & Kumar, S. (2014). A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Procedia Materials Science, 6, 1951-1960. https://doi.org/10.1016/j.mspro.2014.07.229
Kamat, S. V., Hirth, J. P., & Mehrabian, R. (1989). Mechanical properties of particulate-reinforced aluminum-matrix composites. Acta Metallurgica, 37(9), 2395-2402. https://doi.org/10.1016/0001-6160(89)90037-0
Kareem, A., Qudeiri, J. A., Abdudeen, A., Ahammed, T., & Ziout, A. (2021). A review on AA 6061 metal matrix composites produced by stir casting. Materials, 14(1), Article 175. https://doi.org/10.3390/ma14010175
Kaviyarasan, K., Pridhar, T., Sureshbabu, B., Boopathi, C., & Srinivasan, R. (2018). Fabrication of Al6061-Al2O3 composite through liquid metallurgy technique. IOP Conference Series: Materials Science and Engineering, 402, Article 012148. https://doi.org/10.1088/1757-899X/402/1/012148
Kumar, U. K. G. B. A. V. (2017). Method of stir casting of aluminum metal matrix composites: a review. Materials Today: Proceedings, 4(2), 1140-1146. https://doi.org/10.1016/j.matpr.2017.01.130
Kumar, S. R., Patnaik, A., & Bhat, I. K. (2016). The in vitro wear behavior of nanozirconia-filled dental composite in food slurry condition. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231(1), 23-40. https://doi.org/10.1177/1350650116641329
Kumar, V. M., & Venkatesh, C. V. (2018). Effect of ceramic reinforcement on mechanical properties of aluminum matrix composites produced by stir casting process. Materials Today: Proceedings, 5(1), 2466-2473. https://doi.org/10.1016/j.matpr.2017.11.027
Manigandan, K., Srivatsan, T. S., Ren, Z., & Zhao, J. (2015). Influence of reinforcement content on tensile response and fracture behavior of an aluminum alloy metal matrix composite. In T. Sano, & T. S. Srivatsan (Eds.) Advanced composites for aerospace, marine, and land applications II (pp. 345-359). Springer. https://doi.org/10.1007/978-3-319-48141-8_8
Marques, C. L. M., Kumar, S. R., Goswami, C. & Verma, R. (2021). Numerical simulation of armor materials and optimization using gray relational analysis. Materials Today: Proceedings, 44, 4717-4730. https://doi.org/10.1016/j.matpr.2020.10.942
Mehara, M., Goswami, C., Kumar, S. R., Singh, G. & Wagdre, M. K. (2021). Performance evaluation of advanced armor materials. Materials Today: Proceedings, 47, 6039-6042. https://doi.org/10.1016/j.matpr.2021.04.611
Mishra, S., Patnaik, A., & Kumar, S. R. (2019a). Comparative analysis of wear behavior of garnet and fly ash reinforced Al7075 hybrid composite. Materials Science & Engineering Technology, 50(1), 86-96. https://doi.org/10.1002/mawe.201800121
Mishra, S., Patnaik, A., & Kumar, S. R. (2019b). Physico‐mechanical characterization of garnet and fly ash reinforced Al7075 hybrid composite. Materials Science & Engineering Technology, 50(6), 731-741. https://doi.org/10.1002/mawe.201800133
Muraliraja, R., Arunachalam, R., Al-Fori, I. Al-Maharbi, M., & Piya, S. (2019). Development of alumina reinforced aluminum metal matrix composite with enhanced compressive strength through squeeze casting process. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(3), 307-314. https://doi.org/10.1177/1464420718809516
Nieberle, T., Kumar, S. R., Patnaik, A., & Goswami, C. (2021). Review: Composite materials for armour application. In: P. K. Rakesh, A. K. Sharma, & I. Singh (Eds.), Advances in engineering design (pp. 239-248). Springer. https://doi.org/10.1007/978-981-33-4018-3_22
Parthiban, A., Pugazhenthi, R., Ravikumar, R., & Vivek, P. (2017). Experimental investigation of turning parameters on AA 6061-T6 material. IOP Conference Series: Materials Science and Engineering, 183, Article 012013. https://doi.org/10.1088/1757-899X/183/1/012013
Poornachandiran, N., Pugazhenthi, R., Vijay Ananth, S., Krishnan, T. G. & Vairavel, M. (2020). Investigation of mechanical properties of Al6061 with reinforcement of SiC/B4C metal matrix composites. AIP Conference Proceedings, 2283, Article 020113. https://doi.org/10.1063/5.0025004
Prasad, D. S., Shoba, C., & Ramanaiah, N. (2014). Investigations on mechanical properties of aluminum hybrid composites. Journal of Materials Research and Technology, 3(1), 79-85. https://doi.org/10.1016/j.jmrt.2013.11.002
Pugazhenthi, R., Sivaganesan, S., Dhansekaran, C. & Parthiban, A. (2019). Morphological and mechanical characteristics of hybrid aluminium matrix composites. International Journal of Vehicle Structures & Systems, 11(2), 173-175. https://doi.org/10.4273/ijvss.11.2.11
Sabry, I., Ghafaar, M. A., Mourad, A. H. I., & Idrisi, A. H. (2001). Stir casted SiC-Gr/Al6061 hybrid composite tribological and mechanical properties. AN Applied Sciences, 2, Article 943. https://doi.org/10.1007/s42452-020-2713-4
Sankarlal, S., & Kuppusamy, V. (2018). Fabrication of aluminium 6061-SiC-Al2O3 MMC and HMMC by stir casting technique and comparing the mechanical properties. International Journal of Mechanical and Production Engineering Research and Development, 8(1), 635-642.
Sayuti, M., Sulaiman, S., Vijayaram, T. R., Baharudin, B. T. H. T., & Arifi, M. K. A. (2012). Manufacturing and Properties of Quartz (SiO2) Particulate Reinforced Al-11.8%Si Matrix Composites. In N. Hu (Ed.), Composites and their properties. InTechOpen. doi: https://doi.org/10.5772/48095
Shankar, M. C. G., Shettar, M., Sharma, S. S., Kini, A., & Jayashree. (2018). Enhancement in hardness and influence of artificial aging on stir cast Al6061-B4C and Al6061-SiC composites. Materials Today Proceedings, 5(1), 2435-2443. https://doi.org/10.1016/j.matpr.2017.11.023
Singh, J., & Chauhan, A. (2018). A review of microstructure, mechanical properties and wear behavior of hybrid aluminium matrix composites fabricated via stir casting route. Sādhanā, 44, Article 16. https://doi.org/10.1007/s12046-018-1025-5
Singh, T., Patnaik, A. & Satapathy, B. K. (2011). Effect of Carbon Nanotubes on Tribo‐Performance of Brake Friction Materials. AIP Conference Proceedings, 1393(1), 223-224. https://doi.org/10.1063/1.3653690
Singh, T., Patnaik, A., & Satapathy, B. K. (2013). Friction braking performance of nano-filled hybrid fiber reinforced phenolic composites: Influence of nanoclay and carbon nanotubes. Nano, 08(03), Article 1350025. https://doi.org/10.1142/S1793292013500252
Singh, T., Patnaik, A., Satapathy, B. K. & Kumar, M. (2012). Performance analysis of organic friction composite materials based on carbon nanotubes-organic-inorganic fibrous reinforcement using hybrid AHP-FTOPSIS approach. Composites: Mechanics, Computations, Applications: An International Journal, 3(3), 189-214. https://doi.org/10.1615/CompMechComputApplIntJ.v3.i3.10
Sivaram, A., Krishnakumar, K., Rajavel, D. R., & Sabarish, R. (2015). Experimental investigation of creep behaviour of aluminium alloy (LM25) and zirconium DI-oxide (ZR02) particulate MMC. International Journal of Mechanical Engineering and Technology, 6(8), 126-138.
Sun, Y., Lyu, Y., Jiang, A. & Zhao, J. (2014). Fabrication and characterization of aluminum matrix fly ash cenosphere composites using different stir casting routes. Journal of Materials Research, 29, 260-266. https://doi.org/10.1557/jmr.2013.372
Virinchy, C. S., Vijayarangan, J., Asif, A. H., & Pugazhenthi, R. (2019). Experimental investigation of Al-Mg-SiC-fly ash composites for automotive alloy wheel rims. International Journal of Vehicle Structures & Systems, 11(2) 121-124. http://dx.doi.org/10.4273/ijvss.11.2.01
Yang, J. B., Lin, C. B., Wang, T. C., & Chu, H. Y. (2004). The tribological characteristics of A356.2Al alloy/Gr(p) composites. Wear, 257(9-10), 941-952. https://doi.org/10.1016/j.wear.2004.05.015