Abstract
In the publication, tests were conducted on compressor turbine working blades made of EI-867 material, in accordance with the TU 14-1-402-72 standard, which were subjected to the gas non-contact aluminizing process. Metallographic analyses of the produced aluminide layer were undertaken, and the phase components of the aluminide layer microstructure were identified. This identification was achieved by analyzing the chemical composition in micro-areas using the EDS attachment in a scanning electron microscope and using X-ray diffraction. Additionally, hardness and creep resistance tests of the blades, after undergoing solution and aging processes, were performed over different durations. The research was aimed at exploring the feasibility of the aluminizing process using the "above the pack" method on parts made of EI-867 material and understanding the process's impact on the creep resistance of the part. Experimental research have shown that aluminizing turbine blades with EI-867 using the "above the pack" method to obtain a layer thickness in the range of 0.03-0.06 mm is possible within 10 hours at 950ºC. Aluminizing with the analyzed method results in the formation of an aluminized layer with a three-phase structure that ensures the appropriate strength of the coating. However, it has been shown that the aluminizing process using the "above the pack" method with the applied time of 10 hours causes a significant reduction in the creep resistance of the material. Based on the obtained results, it was shown that the non-contact aluminizing method for turbine blades made of EI 867 material does not meet aviation requirements for safe operation due to a significant reduction in mechanical properties.
References
Albrecht, R. (2017). Defekty strukturalne oraz ich związek z krystalizacją monokrystalicznych łopatek silników lotniczych [Rozprawa doktorska, Uniwersytet Śląski]. Katowice.
Błachnio, J. (2011). Analysis of causes of decohesion of a gas turbine blade made of EI 867‐WD alloy. Aircraft Engineering and Aerospace Technology, 83(1), 14-20. https://doi.org/10.1108/00022661111119874
Błachnio, J., Dzięgielewski, W., Kułaszka, A., & Zasada, D. (2014). Wpływ czynników eksploatacyjnych na stan żaroodpornej powłoki łopatek turbiny gazowej. Studies & Proceedings of Polish Association for Knowledge Management. 68, 17-31.
Godzimirski, J. (2011). Nowe technologie lotniczych silników turbinowych. Prace Instytutu Lotnictwa, 213, 22-36.
Golewski, P. (2015). Obciążenia cieplno-mechaniczne łopatek silników turbinowych z ceramicznymi powłokami ochronnymi [Rozprawa doktorska, Politechnika Lubelska]. Lublin.
МЧМ. (1972). Министерство черной металлургии CCCP, Москва. Прутки из жаропрочных сплявов. (Norma materiałowa TU 14-1-402-72).
Szczepankowski, A., & Szymczak, J. (2016). Uszkodzenia cieplne lotniczych silników turbinowych. Prace Naukowe Instytutu Technicznego Wojsk Lotniczych, 38, 21-32.
Zasada, D., Bogdan, M., & Błachnio, J. (2016). Increased temperature impact on durability of gas turbine blades. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 19(1), 48-53. http://dx.doi.org/10.17531/ein.2017.1.7