Effect of Floating-Plug Drawing Process Parameters on Surface Finish of Inner and Outer Surfaces of AISI 321 Stainless Steel Thin-Walled Tubes


analysis of variance
floating plug
stainless steel
surface roughness
tube drawing

How to Cite

Żaba, K., & Szpunar, M. (2024). Effect of Floating-Plug Drawing Process Parameters on Surface Finish of Inner and Outer Surfaces of AISI 321 Stainless Steel Thin-Walled Tubes. Advances in Mechanical and Materials Engineering, 41(1), 27-37. https://doi.org/10.7862/rm.2024.3


This article presents the results of the analysis of changes in the surface topography of AISI 321 (1.4541) thin-walled stainless steel tubes in single-pass Floating-Plug Drawing (FPD) process. Experimental tests were carried out with variable drawing speed (1, 2, 3, 4, 6, and 10 m/min) and different angles of floating plug (11.3°, 13° and 14°). Wisura DSO7010 (Fuchs Oil) lubricant was used in the experiments. Mean roughness Ra and ten point height of irregularities Rz were adopted as surface quality indicators. Roughness parameters were measured independently on the inner and outer surfaces of thin-walled tubes. Analysis of variance was used to analyse the relationship between process parameters (drawing speed and angle of floating plug) and surface roughness of tubes. A decrease in the values of both analyzed roughness parameters was observed as a result of the drawing process. The FPD process significantly improves the inner surface quality of AISI 321 thin-walled stainless steel tubes. The mean roughness value tends to increase with increasing drawing speed, while the angle of the floating-plug has no significant effect on the mean roughness Ra.



Bartnicki, J., & Pater, Z. (2005). Walcowanie poprzeczno – klinowe wyrobów drążonych [Cross-wedge rolling of hollow products]. Wydawnictwo Politechniki Lubelskiej.

Byon, S. M., Lee, S. J., Lee, D. W., Lee, Y. H., & Lee, Y. (2011). Effect of coating material and lubricant on forming force and surface defects in wire drawing process. Transactions of Nonferrous Metals Society of China, 21, 104–110. https://doi.org/10.1016/S1003-6326(11)61071-6

Campos, H. B., & Cetlin, P. R. (1998). The influence of die semi-angle and of the coefficient of friction on the uniform tensile elongation of drawn copper bars. Journal of Materials Processing Technology, 80–81, 388–391. https://doi.org/10.1016/S0924-0136(98)00117-4

Danckert, J., & Endelt, B. (2009). LS-Dyna(R) used to analyse the drawing of precision tubes. Proceedings of the 7th European LS_DYNA Conference, Salzburg, Austria, 14-15 May 2009, pp. 1–14.

de Castro Maciel, D., Martins, N., Corradi, D. R., Gomes, D. J. C., Dutra, J. M. S., & da Silva, G. C. (2016). Lubrication influence in the drawing process of aluminum, steel and copper alloys. Proceedings of the 5th International Conference on Integrity-Reliability-Failure, 24-28 July 2016, Porto, Portugal, pp. 145–156.

Kwan, C. T. (2002). A generalized velocity field for axisymmetric tube drawing through an arbitrarily curved die with an arbitrarily curved plug. Journal of Materials Processing Technology, 122(2-3), 213–219. https://doi.org/10.1016/S0924-0136(02)00013-4

Larsson, J., Jansson, A., & Karlssomn, P. (2019). Monitoring and evaluation of the wire drawing process using thermal imaging. International Journal of Advanced Manufacturing Technology, 101, 2121–2134. https://doi.org/10.1007/s00170-018-3021-7

Łuksza, J. (2001). Elementy ciągarstwa [Fundamentals of drawing]. Wydawnictwo AGH.

Martínez, G. A. S., Rodriguez-Alabanda, O., Prosco, U., Tintelecan, M., & Kabayama, L. K. (2022). The influences of the variable speed and internal die geometry on the performance of two commercial soluble oils in the drawing process of pure copper fine wire. International Journal of Advanced Manufacturing Technology, 118, 3749–3760. https://doi.org/10.1007/s00170-021-08172-2

Necpal, M., Martinkovič, M., & Vaclav, Š. (2018). Determination of the coefficient of friction under cold tube drawing using FEM simulation and drawing force measurement. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 26(42), 29–34. https://doi.org/10.2478/rput-2018-0003

Nowosielski, M., Żaba, K., Nowak, S., & Świątek, B. (2016, May 23-25). Projektowanie procesu ciągnienia rur z brązu na trzpieniu swobodnym [Design of the floating-plug drawing of bronze tubes]. Proceedings of the 4th Conference “Doskonalenie Jakości Procesów Technologicznych”. Sromowce Niżne, Poland, pp. 95–111.

Pasierb, A., Osika, J., & Żaba, K. (2000). Optymalizacja procesu ciągnienia rur na korku swobodnym z materiałów trudno odkształcalnych [Optimum conditions for drawing of pipes, from hard-deformable materials, on free plug]. Rudy i Metale Nieżelazne, 45(10–11), 520–527.

Patil, M., Singh, V., Gupta, A. K., Regalla, S. P., Bera, T. C., Simhachalam, B., & Srinivas, K. (2021). Tin layer as a solid lubricant for cold tube drawing processes. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 459–472. https://doi.org/10.1007/s40684-020-00301-8

Patil, M., Singh, V., Simhachalam, B., & Srinivas, K. (2020). Effect of lubrication technique in tube drawing. Materials Today: Proceedings, 28, 426–431. https://doi.org/10.1016/j.matpr.2019.10.027

Pernis, R. (2001). Ciągnienie rur na trzpieniu swobodnym [Floating-plug drawing of tubes]. Rudy i Metale Nieżelazne, 46(7), 305–311.

Pernis, R., & Kasala, J. (2013). The influence of the die and floating plug geometry on the drawing process of tubing. International Journal of Advanced Manufacturing Technology, 65, 1081–1089. https://doi.org/10.1007/s00170-012-4241-x

Pouyafar, V., Bolandi, H., & Meshkabadi, R. (2022). Tube drawing analysis using upper bound and energy methods and validation by Cockcroft-Latham failure criteria. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44, Article 9. https://doi.org/10.1007/s40430-021-03302-z

Rubio, E. M., Camacho, A. M., Pérez, R., & Marín, M. M. (2017). Guidelines for selecting plugs used in thin-walled tube drawing processes of metallic alloys. Metals, 7, Article 572. https://doi.org/10.3390/met7120572

Rubio, E. M., González, C., Marcos, M., & Sebastián, M. A. (2006). Energetic analysis of tube drawing processes with fixed plug by upper bound method. Journal of Materials Processing Technology, 177, 175–178. https://doi.org/10.1016/j.jmatprotec.2006.03.193

Sadok, L., & Pietrzyk, M. (1981). Analiza pracy korka swobodnego w obszarze odkształcenia [Analysis of the work of a free plug in the deformation area]. Hutnik, 2, 62–65.

Shen, W. H., Li, Z. G., Zhang, S. H., & Liu H. M. (2009). Numerical simulation of floating-plug drawing of copper tubes with pores. International Journal of Product Development, 7(3-4), 301–310. https://doi.org/10.1504/IJPD.2009.023324

Skoblik, R., & Wilczewski, L. (2006). Technologia Metali. Laboratorium [Metal Technology. Laboratory]. Politechnika Gdańska.

Smith, D. J., Bramley, A. N. (1973). A theoretical study of tube drawing with a floating plug. In: Tobias, S.A., Koenigsberger, F. (eds) Proceedings of the Thirteenth International Machine Tool Design and Research Conference. Palgrave, London. https://doi.org/10.1007/978-1-349-01857-4_70

Suliga, M. (2014). Analysis of the heating of steel wires during high speed multipass drawing process. Archives of Metallurgy and Materials, 59(4), 1475–1480. https://doi.org/10.2478/amm-2014-0251

Świątkowski, K., & Hatalak, R. (2001). Study of the new floating-plug drawing process of thin-walled tubes. Journal of Materials Processing Technology, 151(1–3), 105–114. https://doi.org/10.1016/j.jmatprotec.2004.04.024

Um, K. K., & Lec, D. N. (1997). An upper bound solution of tube drawing. Journal of Materials Processing Technology, 63(1-3), 43-48. https://doi.org/10.1016/S0924-0136(96)02597-6

Wang, C. S., & Wang, Y. C. (2008). The theoretical and experimental of tube drawing with floating plug for micro heat-pipes. Journal of Mechanics, 24(2), 111–117. https://doi.org/10.1017/S1727719100002136

Yan, J. P., Zhao, R., Meng, B., Wan, M., & Wang, Z. X. Analysis of the properties and microstructure of ultra-thin tube. IOP Conference Series: Materials Science and Engineering, 1270, Article 012023. https://doi.org/10.1088/1757-899X/1270/1/012

Yoshida, K., Watanabe, M., & Ishikawa, H. (2001). Drawing of Ni–Ti shape-memory-alloy fine tubes used in medical tests. Journal of Materials Processing Technology, 118, 251–255. https://doi.org/10.1016/S0924-0136(01)00930-X

Żaba, K., & Pasierb, A. (2004). Analiza parametrów procesu ciągnienia rur na korku swobodnym ze stali 1H18N10T pod kątem stanu i własności otrzymanych wyrobów [Analysis of floating-plug drawing process of 1H18N10T steel tubes with consideration of condition and properties of the obtained products]. Rudy i Metale Nieżelazne, 48(10-11), 524–517.