Analysis of the Thermal Expansion Coefficient of Glass- and Carbon-Fibre-Reinforced Composites
PDF

Keywords

Keywords: coefficient of thermal expansion, composites, dilatometric analysis, temperature, thermal expansion

How to Cite

Fejkiel, R., & Skwara, K. (2024). Analysis of the Thermal Expansion Coefficient of Glass- and Carbon-Fibre-Reinforced Composites. Advances in Mechanical and Materials Engineering, 41(1), 17-26. https://doi.org/10.7862/rm.2024.2

Abstract

With the development of manufacturing processes, an increase in the importance of metal-fibre composites in materials engineering is observed. These are materials consisting of appropriately arranged layers of metal and various types of fibres. The very wide use of composite materials in the construction of machine and equipment components means they are often exposed to work in variable temperature conditions. The aim of this article was analysis of the thermal expansion of typical composites: carbon fibre-reinforced polymer, glass fibre-reinforced polymer, glass-reinforced aluminium laminate and carbon-fibre reinforced aluminium laminate. EN AW-6060 aluminium alloy was used as the reference material. The aim of the dilatometric tests was to determine the coefficient of thermal expansion and the dimensional stability of composite materials at elevated temperatures up to 100 °C. The EN AW-6060 aluminium alloy was characterized by the highest linear expansion coefficient (20.27×10−6 1/K). Composites containing glass fibres were characterized by the lowest positive linear thermal expansion coefficient. Among the composite materials tested, CARALLs exhibit the lowest thermal expansion coefficient.                                             

 

https://doi.org/10.7862/rm.2024.2
PDF

References

Ahmad, H., Markina, A. A., Porotnikov, M. V., & Ahmad, F. (2020). A review of carbon fibre materials in automotive industry. IOP Conference Series: Materials Science and Engineering, 971, Article 032011. https://doi.org/10.1088/1757-899X/971/3/032011

Al-Abboodi, H., Fan, H., Al-Bahrani, M., Abdelhussien, A., & Mohamad, B. (2023). Mechanical characteristics of nano-crystalline material in metallic glass formers. Facta Universitatis-Series Mechanical Engineering. https://doi.org/10.22190/FUME230128016A

Aluminium 6060 (2023, November 22). Aluminium 6060 / 3.3206 / Al-MgSi. https://xometry.eu/wp-content/uploads/2021/02/Aluminium-3.3206.pdf

Ashrith, H. S., Jeevan, T. P., & Xu, J. (2023). A review on the fabrication and mechanical characterization of fibrous composites for engineering applications. Journal of Composites Science, 7(6), Article 252. https://doi.org/10.3390/jcs7060252

Barsotti, B., Gaiotti, M., & Rizzo. C. M. (2020). Recent industrial developments of marine composites limit states and design approaches on strength. Journal of Marine Science and Application, 19, 553–566. https://doi.org/10.1007/s11804-020-00171-1

Bielawski, R., Rządkowski, W., Augustyn, S., & Pyrzanowski, P. (2015). Nowoczesne materiały stosowane w konstrukcjach lotniczych - wybrane problemy oraz kierunki rozwoju [Modern materials used in aircraft constructions selected problems and directions for development]. Zeszyty Naukowe Politechniki Rzeszowskiej – Mechanika, 32(291), 203-216. http://dx.doi.org/10.7862/rm.2015.20

Bieniaś, J., Jakubczak, P., Droździel, M., & Surowska, B. (2020). Interlaminar shear strength and failure analysis of aluminium-carbon laminates with a glass fiber interlayer after moisture absorption. Materials, 13, Article 2999. https://doi.org/10.3390/ma13132999

Costa, R. D. F. S., Sales-Contini, R. C. M., Silva, F. J. G., Sebbe, N., & Jesus, A. M. P. A. (2023). Critical review on fibre metal laminates (FML): From manufacturing to sustainable processing. Metals, 13(4), Article 638. https://doi.org/10.3390/met13040638

De Macêdo Wahrhaftig, A., Plevris, V., Mohamad, B. A., & Pereira, D. L. (2023). Minimum design bending moment for systems of equivalent stiffness. Structures, 57, Article 105224. https://doi.org/10.1016/j.istruc.2023.105224

Dergal, E., Kudrevatykh, O., & Quinn, N. (2022). A dilatometer for the carbon fibre composite tubes. System Design and Analysis of Aerospace Technique Characteristics, 27(2), 15–26. https://doi.org/10.15421/471919

Dul, Ł. (2013). Analiza możliwości pomiarów rozszerzalności liniowej kompozytów o dużej przewodności cieplnej z wykorzystaniem metod analitycznych [Analysis of possibility of lineat expansion measurements on composites of high thermal conductivity using analytical methods]. Zeszyty Naukowe Ostrołęckiego Towarzystwa Naukowego, 27, 244–259.

EN 573-3+A1. (2022). Aluminium and aluminium alloys - Chemical composition and form of wrought products - Part 3: Chemical composition and form of products. European Committee for Standardization.

EN AW-6060. (2023, November 22). Material Data Sheet. EN AW-6060. https://ucpcdn.thyssenkrupp.com/_legacy/UCPthyssenkruppBAMXUK/assets.files/material-data-sheets/aluminium/aluminium-6060.pdf

Fu, Q., Wang, L., Tian, X., & Shen, Q. (2019). Effects of thermal shock on the microstructures, mechanical and thermophysical properties of SiCnws-C/C composites. Composites Part B: Engineering, 164, 620–628. https://doi.org/10.1016/j.compositesb.2019.01.079

Garofano, A., Acanfora, V., & Fittipaldi, F. (2023). On the use of a hybrid metallic-composite design to increase mechanical performance of an automotive chassis. Journal of Materials Engineering and Performance 32, 3853–3870. https://doi.org/10.1007/s11665-023-08206-8

Hamill, L., Hofmann, D. C., & Nutt, S. (2017). Galvanic corrosion and mechanical behavior of fibre metal laminates of metallic glass and carbon fibre composites. Advanced Engineering Materials, 20(2), Article 1700711. https://doi.org/10.1002/adem.201700711

Hu, H., Wei, Q., Liu, B., Liu, Y., Hu, N., Ma, Q., & Wang, C. (2022). Progressive damage behaviour analysis and comparison with 2d/3d Hashin failure models on carbon fibre–reinforced aluminium laminates. Polymers, 14, 2946. https://doi.org/10.3390/polym14142946

Jakubczak, P., Surowska, B., Bieniaś, J. (2016). Evaluation of force-time changes during impact of hybrid laminates made of titanium and fibrous composite. Archives of Metallurgy and Materials, 61(2), 689–694. https://doi.org/10.1515/amm-2016-0117

James, J. (2017). Chapter 7 - Thermomechanical Analysis and Its Applications. In S. Thomas, R. Thomas, A. K., Zachariah, R. K. Mishra (Eds.), Thermal and rheological measurement techniques for nanomaterials characterization (2nd ed., pp. 159–171). Elsevier Inc.

Łagiewka, M., Komopka, Z., Zyska, A., & Nadolski, M. (2009). Wpływ rodzaju zbrojenia na rozszerzalność cieplną metalowych materiałów kompozytowych [The influence of the reinforcement type on thermal expansion of metal matrix composites]. Kompozyty, 9(4), 380–383.

PA38. (2023, November 22). PA38 (AW-6060). https://www.kronosedm.pl/aluminium-pa38-aw-6060/

Prussak, R., Stefaniak, D., Hühne, C., & Sinapius, M. (2018). Evaluation of residual stress development in FRP-metal hybrids using fibre Bragg grating sensors. Production Engineering Research and Development, 12, 259–267. https://doi.org/10.1007/s11740-018-0793-4

Ray, B. C. (2005). Thermal shock and thermal fatigue on delamination of glass-fibre-reinforced polymeric composites. Journal of Reinforced Plastics and Composites, 24(1), 111–116. https://doi.org/10.1177/0731684405042953

Ribeiro, I., Kaufmann, J., Götze, U., Peças, P., & Henriques, E. (2019). Fibre reinforced polymers in the sports industry – Life Cycle Engineering methodology applied to a snowboard using anisotropic layer design. International Journal of Sustainable Engineering, 12(3), 201–211. https://doi.org/10.1080/19397038.2018.1508318

Saba, N., & Jawaid, M. (2018). A review on thermomechanical properties of polymers and fibres reinforced polymer composites. Journal of Industrial and Engineering Chemistry, 67, 1–11. https://doi.org/10.1016/j.jiec.2018.06.018

Samuel, R., Ramadoss, K. N., Gunasekaran, K., Logesh, S., Gnanaraj, S. J. P., & Abdul, M. (2021). Studies on mechanical properties and characterization of carbon fibre reinforced hybrid composite for aero space application. Materials Today Proceedings, 47, 4438–4443. https://doi.org/10.1016/j.matpr.2021.05.304

Shaikh, H., Alothman, O. Y., Alshammari, B. A., & Jawaid, M. (2023). Dynamic and thermo-mechanical properties of polypropylene reinforced with date palm nano filler. Journal of King Saud University - Science, 35(3), Article 102561. https://doi.org/10.1016/j.jksus.2023.102561

Siengchin, S. (2023). A review on lightweight materials for defence applications: Present and future developments. Defence Technology, 24, 1–17. https://doi.org/10.1016/j.dt.2023.02.025

Sierpiński, Z. (2023, November 22). Analiza termiczna w metaloznawstwie - możliwości i zastosowania. Cz. 1. Skaningowa kalorymetria różnicowa [Thermal analysis in materials science - possibilities and applications. Vol. 1. Differential scanning calorimetry]. https://home.agh.edu.pl/~blaz/wyklady/pliki/analiza.pdf

Song, G. L., Zhang, C., Chen, X., & Zheng, D. (2021). Galvanic activity of carbon fibre reinforced polymers and electrochemical behavior of carbon fibre. Corrosion Communications, 1, 26–39. https://doi.org/10.1016/j.corcom.2021.05.003

Tinkloh, S., Wu, T., Tröster, T., & Niendorf, T. (2020). A micromechanical-based finite element simulation of process-induced residual stresses in metal-CFRP-hybrid structures. Composite Structures, 238, Article 111926. https://doi.org/10.1016/j.compstruct.2020.111926

Trębacki, K., & Królicka, A. (2017). Wpływ struktury materiałów kompozytowych na własności mechaniczne [The influence a structure of composite materials on mechanical property]. Autobusy, 9, 129–131.

Walczak, M., Zwierzchowski, M., Bieniaś, J., & Caban, J. (2017). The tribological characteristics of Al-Si/graphite composite. Tribologia, 1, 97–104.

Wang, W. X., Takao, Y., & Matsubara, T. (2007, July 8-13). Galvanic corrosion-resistant carbon fibre metal laminates. Proceedings of the 16th International Conference on Composite Materials, pp. 1–10. Japan Society for Composite Materials and Japan Aerospace Exploration Agency.

Xue, J., Wang, W. X., Takao, Y., & Matsubara, T. (2011). Reduction of thermal residual stress in carbon fibre aluminum laminates using a thermal expansion clamp. Composites Part A: Applied Science and Manufacturing, 42(8), 986–992. https://doi.org/10.1016/j.compositesa.2011.04.001