Assessment of the Depth of the Plastically Deformed Top Layer in Burnishing Process of Shaft Using a Ceramic Tool
PDF

Keywords

burnishing
plastically deformed layer
Belyaev’s theory
shafts

How to Cite

Paszta, P., Chałko, L., & Kowalik, R. (2024). Assessment of the Depth of the Plastically Deformed Top Layer in Burnishing Process of Shaft Using a Ceramic Tool. Advances in Mechanical and Materials Engineering, 41(1), 47-55. https://doi.org/10.7862/rm.2024.5

Abstract

Burnishing is one of the most effective methods of improving the strength of the surface layer of shafts as a result of strain strengthening of the material. This article presents an analytical approach to determining the the depth of the plastically deformed top layer of shaft based on Belyaev's theory. Contact of two bodies with an asymmetric stress state was assumed. A classic (symmetrical) solution was also considered. The aim of the research was to compare the calculated values of the depth of the plastically deformed top layer determined using these two methods. The calculations considered burnishing of shafts with a diameter of 48 mm made of steel with a yield stress of Re = 450 MPa and Re = 900 MPa. A burnishing tool with a Si3N4 ceramic tip was used for burnishing. It was found that in the range of low contact forces, the calculated values of the depth of the plastically deformed top layer using the asymmetric solution and the classical method are similar. It was also found that the relationship between the depth of the plastically deformed top layer and the contact force can be explained by a power equation with an accuracy of R2 > 0.999.

https://doi.org/10.7862/rm.2024.5
PDF

References

Belyaev, N. M. (1957). Trudy po teorii uprugosti i plasticznosti [Works on the theory of elasticity and plasticity]. Maszgiz.

Chodor, J., & Kukielka, L. (2014). Using nonlinear contact mechanics in process of tool edge movement on deformable body to analysis of cutting and sliding burnishing processes. Applied Mechanics and Materials 474, 339–344. https://doi.org/10.4028/www.scientific.net/AMM.474.339

Czechowski, K., & Kalisz, J. (2015). Wybrane aspekty procesu nagniatania [Selected aspects of the burnishing process]. Mechanik, 5-6, 452–455. https://doi.org/10.17814/mechanik.2015.5-6.203

Czechowski, K., & Toboła, D. (2017). Gładkościowe nagniatanie ślizgowe stopów metali i kompozytów na osnowie metalowej [Slide finishing burnishing of metal alloys and metal matrix composites]. Mechanik, 7, 552–554. http://dx.doi.org/doi.org/10.17814/mechanik.2017.7.70

Dobrzyński, M., Javorek, L., Orłowski, K. A., & Przybylski, W. (2019). The effect of an active force while slide diamond burnishing of wooden shafts upon process quality. Journal of Construction and Maintenance, 1(112), 7–15.

Dyl, T. (2010). Wpływ nagniatania na umocnienie elementów części maszyn okrętowych [The influence of burnishing on the surface layer strengthening ship machine]. Zeszyty Naukowe Akademii Morskiej w Gdyni, 64, 36–42.

Dyl, T. (2011). Nagniatanie powierzchni płaskich elementów części maszyn okrętowych [The burnishing flat surfaces of machine parts ship]. Zeszyty Naukowe Akademii Morskiej w Gdyni, 71, 2011, 38–48.

Dzierwa, A., Gałda, L., Tupaj, M., & Dudek, K. (2020). Investigation of wear resistance of selected materials after slide burnishing process. Eksploatacja i Niezawodność-Maintenance and Reliability, 22(3), 432–439. https://doi.org/10.17531/ein.2020.3.5

Gałda, L., & Pająk, D. (2022). Analysis of the application of SIC ceramics as a tool material in the slide burnishing process. Technologia i Automatyzacja Montażu, 1, 45–57. http://dx.doi.org/10.7862/tiam.2022.1.5

Huber, M. T. (1904). Właściwa praca odkształcenia jako miara wytężenia materiału [Specific work of strain as a measure of material effort]. Czasopismo Techniczne, 22, 38–50, 61–62, 80–81.

Jezierski, J. (1972). Obróbka maszynowa części maszyn zgniotem na zimno [Work hardening of machine parts]. Prace Naukowe - Politechnika Warszawska: Mechanika, 19.

Jezierski, J., & Mazur, T. (2002). Analysis of the thickness of the plasticized zone in the surface burnishing process. Archive of Mechanical Engineering, 49(2), 105–126.

Kaldunski, P., Patyk, R., Kukielka, L., Bohdal, L., Chodor, J., & Kulakowska, A. (2019). Numerical analysis and experimental researches of the influence of technological parameters burnishing rolling process on fatigue wear of shafts, AIP Conference Proceedings, 2078, Article 020082. https://doi.org/10.1063/1.5092085

Kułakowska, A., Patyk, R., & Bohdal Ł. (2014). Zastosowanie obróbki nagniataniem w tworzeniu ekologicznego produktu [Application of burnishing process in creating environmental product]. Annual Set The Environment Protection, 16, 323–335.

Mazur, T. (2003). Badania grubości warstwy wierzchniej odkształconej plastycznie po nagniataniu powierzchniowym [Testing the thickness of the plastically deformed surface layer after surface burnishing], [Unpublished doctoral dissertation]. Politechnika Radomska

Patyk, R., Kułakowska, A., & Nagnajewicz, S. (2017). Badanie wpływu głębokości nagniatania na chropowatość powierzchni wałków stalowych [Researches of the influence of burnishing depth on the surface roughness parameters of the steel shafts]. Autobusy, 12, 1208–1211.

Przybylski W. (1987). Technologia obróbki nagniataniem [Burnishing technology]. Wydawnictwa Naukowo-Techniczne.

Przybylski, W. (2004). Nagniatanie stali o różnej twardosci narzędziami ceramicznymi [Burnishing of steel of various hardness with ceramic tools]. Zeszyty Naukowe Politechniki Koszalińskiej, 34, 251–258.

Przybylski, W. (2016). Sliding burnishing technology of holes in hardened steel. Advances in Manufacturing Science and Technology, 40(3), 43–51. https://doi.org/10.2478/amst-2016-001

Ryzyk, L. M., & Gradsztejn, I. S. (1964). Tablice całek, sum, szeregów i iloczynów [Tables of integrals, sums, series and products]. Wydawnictwo Naukowe PWN.

Sachin, B., Rao, C. M., Naik, G. M., & Puneet, N. P. (2021). Influence of slide burnishing process on the surface characteristics of precipitation hardenable steel. SN Applied Sciences, 3, Article 223. https://doi.org/10.1007/s42452-021-04260-w

Skoczylas, A., & Zaleski, K. (2022). Study on the surface layer properties and fatigue life of a workpiece machined by centrifugal shot peening and burnishing. Materials, 15, Article 6677. https://doi.org/10.3390/ma15196677

Zaleski, K. (2018). Technologia nagniatania dynamicznego [Dynamic burnishing technology]. Wydawnictwo Politechniki Lubelskiej.

Zaleski, K., & Skoczylas, A. (2019). Effect of slide burnishing on the surface layer and fatigue life of titanium alloy parts. Advances in Materials Science, 19(4), 35–45. https://doi.org/10.2478/adms-2019-0020