The Impact of Particle Size in Fluidized Bed on Heat Transfer Behavior: A Review
PDF

Keywords

fluidized bed
heat transfer
heat excharger
thermal conductivity
siliceous sand
particle size

How to Cite

Darweesh, A. H., & Weis, M. M. (2024). The Impact of Particle Size in Fluidized Bed on Heat Transfer Behavior: A Review. Advances in Mechanical and Materials Engineering, 41(1), 39-46. https://doi.org/10.7862/rm.2024.4

Abstract

This review paper explores the significance of fluidized bed heat exchangers in various industrial applications. By delving into the operation of fluidized beds as multiphase flow systems, the aim is to enhance their capabilities and efficiency. Key parameters such as minimum fluidization velocity and local gas holdup are crucial for characterizing the hydrodynamic behavior of materials within fluidized beds. Fluidization, achieved by passing atmospheric air through particulate solids, imparts fluid-like properties to the bed. Fluidized beds serve as reactors where this phenomenon takes place, offering several advantages in industrial processes, including high rates of heat and mass transfer, low pressure drops, and uniform temperature distribution. In future work, a focus on understanding and optimizing the fluidization process will contribute to further advancements in the performance of fluidized bed heat exchangers.

https://doi.org/10.7862/rm.2024.4
PDF

References

Al-Busoul, M., & Abu-Ein, S. (2003). Local heat transfer coefficients around a horizontal heated tube immersed in a gas fluidized bed. Heat and Mass Transfer Journal, 39, 355–358. https://doi.org/10.1007/s00231-002-0330-y

Andersson, B. Å. (1996). Effects of bed particle size on heat transfer in circulating fluidized bed boilers. Powder Technology, 87(3), 239–248. https://doi.org/10.1016/0032-5910(96)03092-6

Arena, U. (2013). 17 - Fluidized bed gasification. In F. Scala (Ed.). Fluidized bed gasification. fluidized bed technologies for near-zero emission combustion and gasification (pp. 765–812). Woodhead Publishing Limited.

Baskakov, P., Berg, B. V., Vitt, O. K., Filippovsky, N. F., Kirakosyan, V. A., Goldobin, J. M., & Maskaev, V. K. (1973). Heat transfer to objects immersed in fluidized beds. Powder Technology, 8(5–6), 273–282. https://doi.org/10.1016/0032-5910(73)80092-0

Berkache, A., Amroune, S., Golbaf, A., & Mohamad, B. (2022). Experimental and numerical investigations of a turbulent boundary layer under variable temperature gradients. Journal of the Serbian Society for Computational Mechanics, 16(1), 1–15. https://doi.org/10.24874/jsscm.2022.16.01.01

Blaszczuk, A., & Jagodzik, S. (2021). Investigation of heat transfer in a large-scale external heat exchanger with horizontal smooth tube bundle. Energies, 14(17), Article 5553. https://doi.org/10.3390/en14175553

Blaszczuk, A., Pogorzelec, M., & Shimizu, T. (2018). Heat transfer characteristics in a large-scale bubbling fluidized bed with immersed horizontal tube bundles. Energy, 162, 10−19. https://doi.org/10.1016/j.energy.2018.08.008

Cai, R., Zhang, M., Ge, R., Zhang, X., Cai, J., Zhang, Y., Huang, Y., Yang, H., & Lyu, J. (2019). Experimental study on local heat transfer and hydrodynamics with single tube and tube bundles in an external heat exchanger. Applied Thermal Engineering, 149, 924−938. https://doi.org/10.1016/j.applthermaleng.2018.12.040

Chen, P., & Pei, D. C. T. (1985). A model of heat transfer between fluidized beds and immersed surfaces. International Journal of Heat and Mass Transfer, 28(3), 675–682. https://doi.org/10.1016/0017-9310(85)90189-9

Cui, Y., Liu, X., & Zhong, W. (2020). Simulations of coal combustion in a pressurized supercritical CO2 circulating fluidized bed. Energy & Fuels, 34(4), 4977−4992. https://doi.org/10.1021/acs.energyfuels.0c00418

Das, H. J., Mahanta, P., Saikia, R., & Aamir, M. S. (2020). Performance evaluation of drying characteristics in conical bubbling fluidized bed dryer. Powder Technology, 374, 534−543. https://doi.org/10.1016/j.powtec.2020.06.051

Devaru, C. B., & Kolar, A. K. (1995, May 7-10). Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles. Proceedings of the 13th International Conference on Fluidized-Bed Combustion, Orlando, FL, USA.

Dietrich, F., Schöny, G., Fuchs, J., & Hofbauer, H. (2018). Experimental study of the adsorber performance in a multi-stage fluidized bed system for continuous CO2 capture by means of temperature swing adsorption. Fuel Processing Technology, 173, 103−111. https://doi.org/10.1016/j.fuproc.2018.01.013

Foroughi-Dahr, M., Mostoufi, N., Sotudeh-Gharebagh, R., & Chaouki, J. (2017). Particle coating in fluidized beds. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.12206-1

Hou, Q. F., Zhou, Z. Y., & Yu, A. B. (2016). Gas–solid flow and heat transfer in fluidized beds with tubes: Effects of material properties and tube array settings. Powder Technology, 296, 59−71. https://doi.org/10.1016/j.powtec.2015.03.028

Kim, S. W., Ahn, J. Y., Kim, S. D., & Lee, D. H. (2003). Heat transfer and bubble characteristics in a fluidized bed with immersed horizontal tube bundle. International Journal of Heat and Mass Transfer, 46(3), 399–409. https://doi.org/10.1016/S0017-9310(02)00296-X

Kunii, D., & Levenspiel, O. (1991). Fluidization engineering (2nd ed.). Butterworth-Heinemann. https://doi.org/10.1016/C2009-0-24190-0

Li, D., Cai, R., Zhang, M., Yang, H., Choi, K., Ahn, S., & Jeon, C. H. (2020). Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultrasupercritical CFB boiler. Energy, 192, Article 116503. https://doi.org/10.1016/j.energy.2019.116503

Miri, R., Mliki, B., Mohamad, B. A., Abbassi, M. A., Oreijah, M., Guedri, K., & Abderafi, S. (2023). Entropy generation and heat transfer rate for MHD forced convection of nanoliquid in the presence of the viscous dissipation term. CFD Letters, 15(12), 77–106. https://doi.org/10.37934/cfdl.15.12.77106

Mohammed, F. Z., Hussein, A. M., Danook, S. H., & Mohamad, B. (2023). Characterization of a flat plate solar water heating system using different nano-fluids. AIP Conference Proceedings, 2901(1), Article 100018. https://doi.org/10.1063/5.0178901

Mu, L., Buist, K. A., Kuipers, J. A. M., & Deen, N. G. (2020). Hydrodynamic and heat transfer study of a fluidized bed by discrete particle simulations. Processes, 8(4), Article 463. https://doi.org/10.3390/pr8040463

Nag, P. K., Ali, M. N., Basu, P. (1995). A mathematical model for the prediction of heat transfer from finned surfaces in a circulating fluidized bed. International Journal of Heat and Mass Transfer, 38(9), 1675–1681. https://doi.org/10.1016/0017-9310(94)00284-3

Nag, P. K., & Moral, M. (1990). The influence of rectangular fins on heat transfer in circulating fluidized bed boilers. Journal of the Institute of Energy, 143–147.

Ngoh, J., & Lim, E. W. C. (2016). Effects of particle size and bubbling behavior on heat transfer in gas fluidized beds. Applied Thermal Engineering, 105, 225–242. https://doi.org/10.1016/j.applthermaleng.2016.05.165

Ozkaynak, T. F., & Chen, J. C. (1980). Emulsion phase residence time and its use in heat transfer models in fluidized beds. AIChE Journal, 26(4), 544–550. https://doi.org/10.1002/aic.690260404

Papadikis, K., Gu, S., & Bridgwater, A. V. (2010). Computational modelling of the impact of particle size to the heat transfer coefficient between biomass particles and a fluidised bed. Fuel Processing Technology, 91(1), 68–79. https://doi.org/10.1016/j.fuproc.2009.08.016

Park, S. H., Yeo, C. E., Lee, M. J., & Kim, S. W. (2020). Effect of bed particle size on thermal performance of a directly-irradiated fluidized bed gas heater. Processes, 8(8), Article 967. https://doi.org/10.3390/pr8080967

Pence, D. V., Beasley, D. E., & Figliola, R. S. (1994). Heat transfer and surface renewal dynamics in gas-fluidized beds. ASME Journal of Heat and Mass Transfer, 116(4), 929–937. https://doi.org/10.1115/1.2911468

Pröll, T., Schöny, G., Sprachmann, G., & Hofbauer, H. (2016). Introduction and evaluation of a double loop staged fluidized bed system for post-combustion CO2 capture using solid sorbents in a continuous temperature swing adsorption process. Chemical Engineering Science, 141, 166−174. https://doi.org/10.1016/j.ces.2015.11.005

Qader, F. F., Mohamad, B., Hussein, A. M., & Danook, S. H. (2023). Numerical study of heat transfer in a circular pipe filled with porous medium. Pollack Periodica. Online first: https://doi.org/10.1556/606.2023.00869

Rasouli, S., Golriz, M. R., & Hamidi, A. A. (2005). Effect of annular fins on heat transfer of horizontal immersed tube in bubbling fluidized beds. Powder Technology, 154(1), 9–13. https://doi.org/10.1016/j.powtec.2005.02.008

Samanta, A., Zhao, A., Shimizu, G. K. H., Sarkar, P., & Gupta, R. (2012). Post-combustion CO2 capture using solid sorbents: A review. Industrial & Engineering Chemistry Research, 51(4), 1438−1463. https://doi.org/10.1021/ie200686q

Saxena, S. C. (1989). Heat transfer between immersed surfaces and gas-fluidized beds. Advances in Heat Transfer, 19, 97–190. https://doi.org/10.1016/S0065-2717(08)70212-0

Schöny, G., Zehetner, E., Fuchs, J., Pröll, T., Sprachmann, G., & Hofbauer, H. (2016). Design of a bench scale unit for continuous CO2 capture via temperature swing adsorption—Fluid-dynamic feasibility study. Chemical Engineering Research and Design, 106, 155−167. https://doi.org/10.1016/j.cherd.2015.12.018

Sjösten, J., Golriz, M. R., Nordin, A., & Grace, J. R. (2004). Effect of particle coating on fluidized-bed heat transfer. Industrial & Engineering Chemistry Research, 43(18), 5763−5769. https://doi.org/10.1021/ie034317u

Wormsbecker, M., Pugsley, T., & Tanfara, H. (2009). Interpretation of the hydrodynamic behaviour in a conical fluidized bed dryer. Chemical Engineering Science, 64(8), 1739−1746. https://doi.org/10.1016/j.ces.2008.11.025

Yusuf, R., Melaaen, M. C., & Mathiesen, V. (2005). Convective heat and mass transfer modeling in gas-fluidized beds. Chemical Engineering Technology, 28(1), 13–24. https://doi.org/10.1002/ceat.200407014

Zerobin, F., & Pröll, T. (2020). Concentrated carbon dioxide (CO2) from diluted sources through continuous temperature swing adsorption (TSA). Industrial & Engineering Chemistry Research, 59(19), 9207−9214. https://doi.org/10.1021/acs.iecr.9b06177