Implementation of Technology for High-Performance Milling of Aluminum Alloys Using Innovative Tools and Tooling
PDF

Keywords

non-rigid parts
thin-walled element
titanium and aluminium alloys
high-performance milling

How to Cite

Ostrowski, R., Szpunar, M., Myśliwiec , P., Zwolak , M., & Bujny , M. (2024). Implementation of Technology for High-Performance Milling of Aluminum Alloys Using Innovative Tools and Tooling. Advances in Mechanical and Materials Engineering, 41(1), 89-101. https://doi.org/10.7862/rm.2024.9

Abstract

The research described in the concerns the development and implementation of new clamping technologies used in machining, particularly for thin-walled structural components of aircraft and helicopters. Among other things, the performance of the Schunk Vero-S Aviation clamping system in machining landing gear beams from 7075 T6 aluminum alloy was analyzed, resulting in significant increases in production efficiency and improvements in the geometric quality of machined parts. During experimental research and implementation testing, special chucks were used on the Schunk Vero-S Aviation system for machining the chassis beam. The results showed an improvement in the quality and accuracy of machined parts compared to traditional clamping methods. Increased production efficiency by minimizing scrap and significantly better surface quality and geometric properties compared to conventional clamping. These studies were conducted as part of a project by Ultratech Sp. z o.o. which was implementing a project co-financed by European Funds "Development and implementation of an innovative clamping method for milling processing of thin-walled structural elements of helicopters and airplanes".

https://doi.org/10.7862/rm.2024.9
PDF

References

Altintas, Y. (2016). Virtual high performance machining. Procedia CIRP, 46, 372–378. https://doi.org/10.1016/j.procir.2016.04.154

Aurrekoetxea, M., Llanos, I., Zelaieta, O., & de Lacalle, L. N. L. (2022) Towards advanced prediction and control of machining distortion: a comprehensive review. International Journal of Advanced Manufacturing Technology, 122, 2823–2848. https://doi.org/10.1007/s00170-022-10087-5

Bałon, P., Rejman, E., Smusz, R., & Kiełbasa, B. (2017). Obróbka z wysokimi prędkościami skrawania cienkościennych konstrukcji lotniczych. Mechanik, 8-9, 726-729. https://doi.org/10.17814/mechanik.2017.8-9.105

Cichosz, P. (2022) Nowoczesne procesy obróbki skrawaniem. Wydawnictwo Naukowe PWN.

Fiedler, F., Ehrenstein, J., Höltgen, C., Blondrath, A., Schaper, L., Göppert, A., & Schmitt, R. (2024). Jigs and fixtures in production: A systematic literature review. Journal of Manufacturing Systems, 72, 373–405. https://doi.org/10.1016/j.jmsy.2023.10.006

INTEFIX (2013). INTElligent FIXtures for the manufacturing of low rigidity components. Grant agreement ID: 609306.

Li, Z., Zeng, Z., Yang, Y., Ouyang, Z., Ding, P., Sun, J., & Zhu, S. (2024). Research progress in machining technology of aerospace thin-walled components. Journal of Manufacturing Processes, 119, 463-482. https://doi.org/10.1016/j.jmapro.2024.03.111

Möhring, H. C., & Wiederkehr, P. (2016). Intelligent fixtures for high performance machining. Procedia CIRP, 46, 383-390. https://doi.org/10.1016/j.procir.2016.04.042

Oczoś, K. E., & Kawalec, A. (2012). Kształtowanie metali lekkich. Wydawnictwo Naukowe PWN.

Ostrowski, R., Tyczyński, P., & Śliwa, R. (2013, November 5-7). Development of tools with blades based on diamond materials for the aviation industry AIRTEC 2013 - 8th International Conference „Supply on the wings" Frankfurt, Germany.

Pieśko, P., & Kuczmaszewski, J. (2022), Obróbka elementów cienkościennych narzędziami o obniżonej sztywności. Wydawnictwo Politechniki Lubelskiej.

Schiess Vero-S Aviation (2020, May 30). Reduzierung der Rüstzeiten in der Großteilebearbeitung. https://www.zerspanungstechnik.com/bericht/werkstueckspannung/reduzierung_der_ruestzeiten_in_der_groteilebearbeitung-2018-06-26

Yang, S., Yin, T., & Wang, F. (2022). Research on finite element simulation and parameters optimization of milling 7050-T7451 aluminum alloy thin-walled parts. Recent Patents on Engineering, 16(1), 82–93. https://doi.org/10.2174/1872212114999200902153633

Zawada-Michałowska, M., & Kuczmaszewski, J. (2020). Odkształcenia elementów cienkościennych po frezowaniu. Wydawnictwo Politechniki Lubelskiej.

Zawada-Michałowska, M., Kuczmaszewski, J., Legutko, S., & Pieśko, P. (2020a). Techniques for thin-walled element milling with respect to minimising post-machining deformations. Materials, 13(21), Article 4723. https://doi.org/10.3390/ma13214723

Zawada-Michałowska, M., Kuczmaszewski, J., & Pieśko, P. (2020b). Pre-machining of rolled plates as an element of minimising the post-machining deformations. Materials, 13(21), Article 4777. https://doi.org/10.3390/ma13214777

Zheng, Y., Hu, P., Wang, M., & Huang, X. (2023). Prediction model for the evolution of residual stresses and machining deformation of uneven milling plate blanks. Materials, 16(18), Article 18. https://doi.org/10.3390/ma16186113

Zrník, J., Cieslar, M., & Slama, P. (2014). Structure development and deformation behaviour of pure aluminium processed by constrained groove pressing. Materials Science Forum, 794–796, 882–887. https://doi.org/10.4028/www.scientific.net/MSF.794-796.882