Abstract
This article presents the results of experimental tests on the stretch-forming ability of 0.21-mm-thick AW-5052-H28 aluminium alloy sheets used in the production of pull-off cups. Erichsen test under various tribological conditions (dry friction, lubrication with graphite lubricant) was used to assess the sheet formability. Punches with a various diameter of the spherical end (8 and 20 mm) were used in the tests. The effect of soaking conditions and varnishing variants on the value of Erichsen indices IE and IE11 was investigated. The sheets were soaked for 13 minutes at various temperatures: 185°C, 190°C and 200°C. In test conditions without lubrication, the lowest value of the IE index = 3.3 mm was observed for sheets in as-received state and for samples after soaking. However, the highest values of the Erichsen index in tests without lubrication were measured for varnished samples and repeatedly soaked. The tests conducted under lubrication conditions with graphite grease revealed usually higher values of the IE index compared to testing conditions without the use of grease. The values of the IE11 index were approximately twice lower than the IE indices. Observation of the bulge surface revealed a smooth surface, which means that the material is characterised by a fine-grained microstructure.
References
Banabic, D., Bunge, H. J., Pöhlandt, K., & Tekkaya, A. E. (2000). Formability of metallic materials. Springer-Verlag. https://doi.org/10.1007/978-3-662-04013-3
Bang, J., Kim, M., Bae, G., Kim, H. G., Lee, M. G., & Song, J. (2022). Efficient wear simulation methodology for predicting nonlinear wear behavior of tools in sheet metal forming. Materials, 15(13), Article 4509. https://doi.org/10.3390/ma15134509
Bang, J., Park, N., Song, J., Kim, H. G., Bae, G., & Lee, M. G. (2021). Tool wear prediction in the forming of automotive DP980 steel sheet using statistical sensitivity analysis and accelerated U-bending based wear test. Metals 11(2), Article 306. https://doi.org/10.3390/met11020306
Czapla, K., Żaba, K., Kot M., Nejman, I., Madej, M., & Trzepieciński T. Tribological performance of anti-wear coatings on tools for forming aluminium alloy sheets used for producing pull-off caps. Materials, 2023, 16(19), 6465. https://doi.org/10.3390/ma16196465
Devenport, T. M., Griffin, J. M., Rolfe, B. F., & Pereira, M. P. (2023). Friction and wear in stages of galling for sheet metal forming applications. Lubricants, 11(7), Article 288. https://doi.org/10.3390/lubricants11070288
EN ISO 20482. (2014). Metallic materials—Sheet and strip Erichsen cupping test. International Organization for Standardization.
EN ISO 6892-1. (2020). Metallic materials—Tensile testing—Part 1: Method of test at room temperature. International Organization for Standardization.
Fernandes, L., Silva, F. J. G., Andrade, M. F., Alexandre, R., Baptista, A. P. M., & Rodrigues, C. (2017). Improving the punch and die wear behavior in tin coated steel stamping process. Surface and Coatings Technology, 332, 174-189. https://doi.org/10.1016/j.surfcoat.2017.06.086
He, H., Yang, T., Ren, Y., Peng, Y., Xue, S., & Zheng, L. (2022). Experimental investigation on the formability of al-mg alloy 5052 sheet by tensile and cupping test. Materials, 15(24), Article 8949. https://doi.org/10.3390/ma15248949
Leśniak, D., Rękas, A., Libura, W., & Zasadziński, J. (2014). Badania odkształcalności stopów aluminium serii 5xxx o wysokiej zawartości Mg w procesie półprzemysłowego wyciskania. Obróbka Plastyczna Metali, 25(3), 159-167.
Marsh, K., & Bugusu, B. (2007). Food packaging—Roles, materials, and environmental issues. Journal of Food Science, 72(3), 39-55. https://doi.org/10.1111/j.1750-3841.2007.00301.x
Reddy, A. C. S., Rajesham, S., Reddy, P. R., & Umamaheswar, A. C. (2020). Formability: A review on different sheet metal tests for formability. AIP Conference Proceedings, 2269(1), 2020, Article 030026. https://doi.org/10.1063/5.0019536
Sekhar, R. A. (2019). Determining the formability of AA5052 sheets in annealed and H32 condition. Journal of Physics: Conference Series, 1355, Article 012044. https://doi.org/10.1088/1742-6596/1355/1/012044
Singh, M., Choubey, A. K., & Sasikumar, C. (2017). Formability analysis of aluminum alloy by Erichsen cupping test method. Materials Today Proceedings, 4(2), 805–810. https://doi.org/10.1016/j.matpr.2017.01.089
Sobota, J. (2017). Umocnienie odkształceniowe stopów aluminium serii 6xxx. Rudy i Metale Nieżelazne, 62(6), 20-24.
Sravanthi, G., & Nethala, Y. V. K. K. (2015). Analysis of formability on aerospace grade aluminum alloys. International Journal of Engineering Research & Technology, 4(10), 236-260.
Subramani, K., Alogarsamy, S. K., Chinnaiyan, P., & Chinnaiyan, S. N. (2018). Studies on testing and modelling of formability in aluminium alloy sheet forming. Transactions of Famena, 42(2), 67-82. https://doi.org/10.21278/TOF.42206
Wankhede, P., & Suresh, K. (2020). A review on the evaluation of formability in sheet metal forming. Advances in Materials and Processing Technologies, 6(2), 458-485. https://doi.org/10.1080/2374068X.2020.1731229
Yamamoto, S., & Nonaka, T. (2022). Electrostatic and tribological properties of hydrogenated diamond-like carbon on anodic aluminium oxide. Surface and Coatings Technology, 441, Article 128530. https://doi.org/10.1016/j.surfcoat.2022.128530
Yamashita, M., Komuro, S., & Nikawa, M. (2021). Effect of strain-rate on forming limit strain of aluminum alloy and mild steel sheets under strain path change. International Journal of Automation Technology, 15(3), 343-349. https://doi.org/10.20965/ijat.2021.p0343
Zheng, K., He, Z., Qu, H., Chen, F., Han, Y., Zheng, J. H., & Li, N. (2023). A novel quench-form and in-die creep age process for hot forming of 2219 thin aluminum sheets with high precision and efficiency. Journal of Materials Processing Technology, 315, Article 117931. https://doi.org/10.1016/j.jmatprotec.2023.117931