Abstract
Friction is an unfavourable phenomenon in sheet metal forming processes because it increases the forming force, reduces the surface quality of the drawpieces and affects the increased wear of the forming tools. This article presents the results of experimental studies on friction occurring due to the drawing die radius. The test materials used were 0.8-mm-thick strip samples made of AISI 430 steel and AW-1100 aluminium alloy sheets. A special bending under tension friction-test simulator was used to carry out the tests. Countersamples (pins) with different radii in the range of 1.5 mm to 13.5 mm were used. The tests were carried out at room temperature under mineral-based oil lubrication conditions. The friction tests were supplemented by determining the hardness and measuring the surface roughness (parameters Ra, Rq and Rt) of the samples. Based on the results, it was found that the coefficient of friction increased with a decrease in the bending pin radius, however, this behaviour changed above a critical radius (4.5 mm), after which the coefficient of friction increased with an increase in the pin radius. Furthermore, the AW-1100 aluminium alloy strip had a higher coefficient of friction than the AISI 430 steel strip.
References
ABNT VND. (2024, October 15). Available online: https://steelss.com/materials/Special-Steel/VND_45_6650.html
American Society for Testing and Materials (2021). Standard test methods for tension testing of metallic materials (ASTM Standard No. E8/E8M-22:2021). https://www.astm.org/e0008_e0008m-22.html
Andreasen, J. L., Olsson, D. D., Chodnikiewicz, K., & Bay, N. (2006). Bending under tension test with direct friction measurement. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(1), 73-80. https://doi.org/10.1243/095440505X32913
Antonicelli, M., Piccininni, A., & Palumbo, G. (2024). Eco-friendly lubricants for improving performance and environmental impact in cold rolling. Procedia CIRP, 125, 196-200. https://doi.org/10.1016/j.procir.2024.08.034
Arinbjarnar, Ú., & Nielsen, C. V. (2023). Effect of workpiece pre-straining on tribological performance of surface coatings in sheet metal forming. Tribology International, 180, Article 108262. https://doi.org/10.1016/j.triboint.2023.108262
Ayllón, J., Miguel, V., Martinez, A., Rodríguez-Alcaraz, J. L., & Coello, J. (2017). Modelization of bending under tension tests with application to the SPIF processes. Procedia Manufacturing, 13, 299-306. https://doi.org/10.1016/j.promfg.2017.09.076
Azushima, A., & Sakuramoto, M. (2006). Effects of plastic strain on surface roughness and coefficient of friction in tension-bending test. CIRP Annals, 55(1), 303-306. https://doi.org/10.1016/S0007-8506(07)60422-3
Bowden, F. P., & Tabor, D. (1986). The friction and lubrication of solids. Oxford University Press.
Carcel, A. C., Palomares, D., Rodilla, E., & Puig, M. A. P. (2005). Evaluation of vegetable oils as pre-lube oils for stamping. Materials and Design, 26, 587-593. https://doi.org/10.1016/j.matdes.2004.08.010
Ceron, E., Martins, P. A. F., & Bay, N. (2014). Thermal analysis of bending under tension test. Procedia Engineering, 81, 1805-1810. https://doi.org/10.1016/j.proeng.2014.10.236
Chen, R., & Li, S. (2022). Novel three-body nano-abrasive wear mechanism. Friction, 10, 677–687. https://doi.org/10.1007/s40544-020-0481-1
Coubrough, G. J., Alinger, M. J., & Van Tyne, C. J. (2002) Angle of contact between sheet and die during stretch-bend deformation as determined on the bending-under-tension friction test system. Journal of Materials Processing Technology, 130-131, 69-75. http://dx.doi.org/10.1016/S0924-0136(02)00781-1
Devenport, T. M., Griffin, J. M., Rolfe, B. F., Pereira, M. P. (2023). Friction and wear in stages of galling for sheet metal forming applications. Lubricants, 11, Article 288. https://doi.org/10.3390/lubricants11070288
Dilmec, M., & Arap, M. (2016). Effect of geometrical and process parameters on coefficient of friction in deep drawing process at the of lange and the radius regions. International Journal of Advanced Manufacturing Technology, 86, 747-759. https://doi.org/10.1007/s00170-015-8225-5
Evin, E., Nemeth, S., & Vyrostek, M. (2014). Evaluation of friction coefficient of stamping. Acta Mechanica Slovaca, 18(3-4), 20-27.
Folle, L. F., & Schaeffer, L. (2016). Evaluation of contact pressure in bending under tension test by a pressure sensitive film. Journal of Surface Engineered Materials and Advanced Technology, 6, 201-214. http://dx.doi.org/10.4236/jsemat.2016.64018
Folle, L. F., Silva, B. C. S., Batalha, G. F., & Coelho, R. S. (2022). The role of friction on metal forming processes. In G. Pintaude, T. Cousseau, & A. Rudawska (Eds.), Tribology of Machine Elements - Fundamentals and Applications (pp. 1-20). IntechOpen. https://doi.org/10.5772/intechopen.101387
Gao, Y., Li, H., Zhao, D., Wang, M., & Fan, X. (2024). Advances in friction of aluminium alloy deep drawing. Friction, 12, 396–427. https://doi.org/10.1007/s40544-023-0761-7
International Organization for Standardization (2021). Geometrical product specifications (GPS) — Surface texture: ProfilePart 2: Terms, definitions and surface texture parameters (ISO Standard No, 21920-2:2021). https://www.iso.org/standard/72226.html
Kim, Y. S., Jain, M. K. & Metzger, D. R. (2004). A finite element study of capstan friction test. AIP Conference Proceedings, 712, 2264-2269. https://doi.org/10.1063/1.1766872
Kim, Y. S.; Jain, M. K.; & Metzger, D. R. (2012). Determination of pressure-dependent friction coefficient from drAW-bend test and its application to cup drawing. International Journal of Machine Tools and Manufacture, 56, 69-78. https://doi.org/10.1016/j.ijmachtools.2011.12.011
Luiz, V. D., & Rodrigues, P. C. M. (2022). Failure analysis of AISI 430 stainless steel sheet under stretching and bending conditions. International Journal of Advanced Manufacturing Technology, 121, 2759-2772. https://doi.org/10.1007/s00170-022-09451-2
Luiz, V. D., Santos, A. J., Câmara, M. A., & Rodrigues, P. C. M. (2023). Influence of different contact conditions on friction properties of AISI 430 steel sheet with deep drawing quality. Coatings, 13(4), Article 771. https://doi.org/10.3390/coatings13040771
Nanayakkara, N. K. B. M. P., Kelly, G., & Hodgson, P. (2005). Application of bending under tension test to determine the effect of tool radius and the contact pressure on the coefficient of friction in sheet metal forming. Materials Forum, 29, 114-118.
Parsa, M., & Ahkami, S. N. A. (2008). Bending of work hardening sheet metals subjected to tension. International Journal of Material Forming, 1, 173–176. https://doi.org/10.1007/s12289-008-0019-y
Pereira, M. P., Duncan, J. L., Yan, W. & Rolfe, B. F. (2009). Contact pressure evolution at the die radius in sheet metal stamping. Journal of Materials Processing Technology, 209, 3532-3541. http://dx.doi.org/10.1016/ j.jmatprotec.2008.08.010
Pereira, R., Peixinho, N., & Costa, S. L. (2024). A review of sheet metal forming evaluation of advanced high-strength steels (AHSS). Metals, 14, Article 394. https://doi.org/10.3390/met14040394
Roizard, X., Raharijaona, F., Von Stebut, J., & Belliard, P. (1999). Influence of sliding direction and sliding speed on the micro-hydrodynamic lubrication component of aluminium mill-finish sheets. Tribology International, 32, 739-747. https://doi.org/10.1016/S0301-679X(00)00008-6
Semiatin, S.L. (Ed.). (2006). Metalworking: Sheet Forming. ASM International. https://doi.org/10.31399/asm.hb.v14b.9781627081863
Seo, H. Y., Jin, C. K., & Kang, C. G. (2018). Effect on blank holding force on blank deformation at direct and indirect hot deep drawings of boron steel sheets. Metals, 8, Article 574. https://doi.org/10.3390/met8080574
Sulonen, M., Eskola, P., Kumpulainen, J., & Ranta-Eskola, A. A. (1981). Reliable method for measuring the friction coefficient in sheet metal forming. IDDRG Working Group Meetings, Paper WG, III/4, Tokyo.
Swift, H.W. (1948). Plastic bending under tension. Engineering, 166, 333-359.
Trzepieciński, T., & Lemu, H. G. (2020). Effect of lubrication on friction in bending under tension test-experimental and numerical approach. Metals, 10(4), Article 544. https://doi.org/10.3390/met10040544
Vega, M. R. O., Parise, K., Ramos, L. B., Boff, U., Mattedi, S., Schaeffer, L., & Malfatti, C. 23F. (2017). Protic ionic liquids used as metal-forming green lubricants for aluminum: Effect of anion chain length. Materials Research, 20(3), 675-687. https://doi.org/10.1590/1980-5373-MR-2016-0626
Wang, W., Zhao, W., Liu, Y., Zhang, H., Hua, M., Dong, G., Tam, H.-Y., & Chin, K.S. (2021). A pocket-textured surface for improving the tribological properties of point contact under starved lubrication. Materials, 14, Article 1789. https://doi.org/10.3390/ma14071789
Wenzloff, G. J., Hylton, T. A., & Matlock, D. K. (1992). Technical note: A new test procedure for the bending under tension friction test. Journal of Materials Engineering and Performance, 1, 609–613. https://doi.org/10.1007/BF02649242
Więckowski, W., Adamus, J., & Dyner, M. (2020). Sheet metal forming using environmentally benign lubricant. Archives of Civil and Mechanical Engineering, 20, Article 51. https://doi.org/10.1007/s43452-020-00053-x
Zhao, D., Zhao, K., Song, H., Ren, D., & Ying, C. Y. (2021). Influence of geometric attributes on friction coefficient in sheet metal stamping. Mechanical Sciences, 12, 945-958. https://doi.org/10.5194/ms-12-945-2021