Abstract
Springback in sheet metal forming processes is a phenomenon that makes it difficult to obtain products with the desired geometry. This paper presents the results of research on the effect of the blankholder pressure on the elastic deformations of sheets during the forming of strip specimens (50 mm wide and 400 mm long) into U-shaped components. A special die was developed for the forming of sheet metals under variable blankholder pressure conditions in the range between 1 and 3 MPa. Three grades of sheets with significantly different properties were used as the research material: 6063 aluminium alloy, S235JR structural steel and X46Cr13 stainless steel. The research was conducted under dry friction conditions. The elastic deformations of the sheet metal in the U-draw bending process were of a different character in the punch radius and die radius areas. In the area of the punch edge, the springback coefficient decreased with increasing blankholder pressure. This relationship was observed for all the tested materials. In the area of the die edge, a decrease in the value of the bending angle was generally observed in relation to the bending angle in the loaded state.
References
Bozdemir, M., & Golcu, M. (2008). Artificial neural network analysis of springback in V bending. Journal of Applied Sciences, 8(17), 3038-3043. https://doi.org/10.3923/jas.2008.3038.3043
Chen, F. K., & Ko, S. F. (2006). Deformation analysis of springback in L-bending of sheet metal. Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 339-342.
Chen, T. C., Chen, S. X., Wang, C. C., & Lee, T. E. (2023). Analysis of the punch motion curve for the springback of U-shaped sheet metal. Advances in Mechanical Engineering, 15(3). https://doi.org/10.1177/16878132231161151
Choi, M., & Huh, H. (2014). Effect of punch speed on amount of springback in U-bending process of auto-body steel sheets. Procedia Engineering, 81, 963-968. https://doi.org/10.1016/j.proeng.2014.10.125
Dessie, J. E., & Lukacs, Z. (2023). Determination of influential springback parameters in U-bending test. Pollack Periodica, 18(2), 17-22. https://doi.org/10.1556/606.2023.00799
Dou, L., Li, X., Dong, H., Li, D., & Peng, X. (2020). Development of springback tester and the effect of forming speed on the springback of four sheet metal bending processes. IOP Conference Series: Materials Science and Engineering, 967, Article 012065. https://doi.org/10.1088/1757-899X/967/1/012065
El-Megharbel, A., El-Domiaty, A., & Shaker, M. (1990). Springback and residual stresses after stretch bending of workhardening sheet metal. Journal of Materials Processing Technology, 24, 191-200. https://doi.org/10.1016/0924-0136(90)90181-S
Erbel, S., Kuczyński, K, & Marciniak, Z. (1986). Obróbka plastyczna. Wydawnictwo Naukowe PWN.
Gierzyńska, M. (1983). Tarcie, zużycie i smarowanie w obróbce plastycznej metali. Wydawnictwa Naukowo-Techniczne.
Ha, T., Welo, T., Ringen, G., & Wang, J. (2022). A strategy for on-machine springback measurement in rotary draw bending using digital image-based laser tracking. International Journal of Advanced Manufacturing Technology, 119, 705-718. https://doi.org/10.1007/s00170-021-08178-w
Han, L. F., & Liao, Z. L. (2014). The application of radial basis function neural network in springback prediction of sheet flanging. Applied Mechanics and Materials, 668-669, 571-574. https://doi.org/10.4028/ www.scientific.net/AMM.668-669.571
Hou, Y., Min, J., Lin, J., Liu, Z., Carsley, J. E., & Stoughton, T. B. (2017). Springback prediction of sheet metals using improved material models. Procedia Engineering, 207, 173-178. https://doi.org/10.1016/ j.proeng.2017.10.757
Hu, J., Chung, K., Li, X. X., Park, T., Zhou, G. F., & Yao, R. (2011). An automatic spring-back compensation method in die design based on a genetic algorithm. Metals and Materials International, 17, 527–533. https://doi.org/10.1007/s12540-011-0636-8
Khleif, A. A., Kasjkool, L. H., & Hassoon, O. H. (2020). Experimental investigation of hold time effect on springback in V-bending sheet metal forming process. IOP Conference Series: Materials Science and Engineering, 881, 012071. https://doi.org/10.1088/1757-899X/881/1/012071
Li, X., Yang, Y., Wang, Y., Bao, J., & Li, S. (2002). Effect of the material-hardening mode on the springback simulation accuracy of V-free bending. Journal of Materials Processing Technology, 123(2), 209-211. http://dx.doi.org/10.1016/S0924-0136(02)00055-9
Lu, Z., Li, D., Cao, L., Cui, H., & Xu, J. (2023). Springback control in complex sheet-metal forming based on advanced high-strength steel. Coatings, 13, 930. https://doi.org/10.3390/coatings13050930
Nowosielski, M., Żaba, K., Kita, P., & Kwiatkowski, M. (2013). Compensation of springback effect in designing new pressing technologies. Proceedings of the Metal2013 Conference (pp. 1-5). http://dx.doi.org/10.13140/2.1.4897.6328
Rajesh, R., Bharath, K. A., Mohammed, N. P. K., & Subramanian, S. (2024). Springback defect minimization in u bending of AL5052 alloy sheet using Box Behnken design of experiments. Academic Journal of Manufacturing Engineering, 22(1), 127-134.
Sae-Eaw, N., Thanadngarn, C., Sirivedin, K., Buakaew, V., & Neamsup, Y. (2013). The study of the springback effect in the UHSS by U-bending process. Applied Science and Engineering Progress, 6(1), 19-25.
Slota, J., Gajdos, I., Spišák, E., & Šiser, M. (2017). Springback prediction of stretching process using finite element analysis for DP600 steel sheet. Acta Mechanica et Automatica, 11(1), 5-8. https://doi.org/10.1515/ama-2017-0001
Slota J., Jurcisin M., Spišák E., & Sleziak T. (2014). An investigation of springback in sheet metal forming of high strength steels. Applied Mechanics and Materials, 693, 370-375. https://doi.org/10.4028/ www.scientific.net/AMM.693.370
Slota, J., Jurčišin M., & Dvořák M. (2013). Experimental and numerical analysis of springback prediction in U-bendings of anisotropic sheet metals. Zeszyty Naukowe Politechniki Rzeszowskiej - Mechanika, 83(3), 525-533. https://doi.org/10.7862/rm.2013.47
Tong, V. C., & Nguyen, D. T. (2018). A study on spring-back in U-draw bending of DP350 high-strength steel sheets based on combined isotropic and kinematic hardening laws. Advances in Mechanical Engineering, 10(9), https://doi.org/10.1177/1687814018797436
Wang, H., Huang, A., Xing, S., Zhang, C., & Luo, J. (2023). Finite element simulation and experimental study of U-bending forming of high-strength Mg-Gd-Y-Zn-Zr alloy. Metals, 13, Article 1477. https://doi.org/10.3390/met13081477
Wasif, M., Rababah, M., Fatima, A., & Baig, S. U. R. (2023). Prediction of springback using the machine learning technique in high-tensile strength sheet metal during the V-bending process. Jordan Journal of Mechanical and Industrial Engineering, 17(4), 481-488. https://doi.org/10.59038/jjmie/170403
Zajkani, A., & Hajbarati, H. (2017). An analytical modeling for springback prediction during U-bending process of advanced high-strength steels based on anisotropic nonlinear kinematic hardening model. International Journal of Advanced Manufacturing Technology, 90, 349-359. https://doi.org/10.1007/s00170-016-9387-5