Growth Kinetics of a Silicon-Modified Aluminide Coating on a TiNM-B1 Intermetallic Alloy
PDF

Keywords

TiAl
intermetallics
aluminide coatings
pack cementation

How to Cite

Woźniak, M., Góral, M., Kościelniak, B., & Gancarczyk, K. (2025). Growth Kinetics of a Silicon-Modified Aluminide Coating on a TiNM-B1 Intermetallic Alloy. Advances in Mechanical and Materials Engineering, 42(1), 79-87. https://doi.org/10.7862/rm.2025.7

Abstract

TiAl-based intermetallic alloys are used as a structural material in high-temperature applications such as aircraft and turbine engines. To improve the mechanical properties of TiAl, it is often modified by adding other elements such as niobium or chromium. The one of disadvantages of TiAl alloys is not sufficient oxidation resistance. The pack cementation process is one well-known method of modifying TiAl, which involves coating the surface of the alloy with a special mixture containing silicon, to enrich it with this element. As a result of this process, Si-modified aluminide coating is formed, which exhibits improved resistance to high temperatures, making it ideal for use in the aerospace and turbine industries. The study was conducted on a substrate of one of the latest generation of TiAl alloys which we have not yet analyzed. The powder used in the pack cementation process consisted of 20 wt.% Si, 20 wt.% Al, 2 wt.% NH4Cl activator, and the rest Al2O3, as well as 40 wt.% Si, 40 wt.% Al, 1-2% NH4Cl activator, and the rest Al2O3 calculated for 100 g of powder. The process was carried out at a temperature of 950°C for 2, 4, and 6 hours. The following analyses were performed after the pack cementation process: scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) attachment for microanalysis, as well as X-ray diffraction (XRD). Test results indicated a coating structure typical of silicon-modified coatings including the presence of titanium silicides. It was found that increasing the silicon content causes a significant increase in coating thickness.

https://doi.org/10.7862/rm.2025.7
PDF

References

Bauer, P. P., Laska, N., & Swadźba, R. (2021) Increasing the oxidation resistance of γ-TiAl by applying a magnetron sputtered aluminum and silicon based coating. Intermetallics, 133, Article 107177. https://doi.org/10.1016/j.intermet.2021.107177

Bobzin, K., Brögelmann, T., Kalscheuer, C., & Liang, T. (2018). Al-Si and Al-Si-Y coatings deposited by HS-PVD for the oxidation protection of γ-TiAl. Surface and Coatings Technology, 350, 587–595. https://doi.org/10.1016/j.surfcoat.2018.06.074

Dai, J., Zhang, H., Sun, C., Li, S., Chen, C., & Yang, Y. (2020). The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti-6Al-4V alloy. Corrosion Science, 168, Article 108578. https://doi.org/10.1016/j.corsci.2020.108578

De Farias Azevedo, C. R., & Flower, H. M. (1999). Microstructure and phase relationships in Ti-Al-Si system. Materials Science and Technology, 15(8), 869–877. https://doi.org/10.1179/026708399101506661

Genc, O., & Unal, R. (2022) Development of gamma titanium aluminide (γ-TiAl) alloys: A review. Journal of Alloys and Compounds, 929, Article 167262. https://doi.org/10.1016/j.jallcom.2022.167262

Goral, M., Moskal, G., Swadzba, L., & Tetsui, T. (2007). Si-modified aluminide coating deposited on TiAlNb alloy by slurry method. Journal of Achievements in Materials and Manufacturing Engineering, 21(1), 75–78.

Goral, M., Moskal, G., Swadźba, L., & Hetmańczyk, M. (2011a) The influence of silicon amount on structure of Si modified aluminide coating deposited on Ti46Al7Nb alloy by slurry method. Key Engineering Materials, 465, 251–254. https://doi.org/10.4028/www.scientific.net/KEM.465.251

Goral, M., Swadzba, L., Moskal, G., Jarczyk, G., Aguilar, J. (2011b). Diffusion aluminide coatings for TiAl intermetallic turbine blades. Intermetallics, 19(5), 744–747. https://doi.org/10.1016/j.intermet.2010.12.015

Góral, M., Monteiro, P. C., Sosnowy, P., Woźniak, M., Kubaszek, T., & Kościelniak, B. (2022). The formation of Si-aluminide coating formed by plasma spraying and subsequent diffusion annealing on Ti-Al-7Nb intermetallic alloy. Archives of Materials Science and Engineering, 117(2), 49–56. https://doi.org/10.5604/01.3001.0016.1775

Jiang, H. ren, Wang, Z. lei, Ma, W. shuai, Feng, X. ran, Dong, Z. qiang, Zhang L., & Liu Y. (2008). Effects of Nb and Si on high temperature oxidation of TiAl. Transactions of Nonferrous Metals Society of China, 18(3), 512–517. https://doi.org/10.1016/S1003-6326(08)60090-4

Kim, S. W., Wang, P., Oh, M. H., Wee, D. M., & Kumar, K. S. (2004). Mechanical properties of Si- and C-doped directionally solidified TiAl–Nb alloys. Intermetallics, 12(5), 499–509. https://doi.org/10.1016/j.intermet.2004.01.004

Kim, Y. W., & Kim, S. L. (2014). Effects of microstructure and C and Si additions on elevated temperature creep and fatigue of gamma TiAl alloys. Intermetallics, 53, 92–101.https://doi.org/10.1016/j.intermet.2014.04.006

Knaislová, A., Novák, P., Cabibbo, M., Průša, F., Paoletti, C., Jaworska, L., & Vojtěch, D. (2018). Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. Journal of Alloys and Compounds, 752, 317–326.https://doi.org/10.1016/j.jallcom.2018.04.187

Knaislová, A., Šimůnková, V., Novák, P., Průša, F., Cabibbo, M., Jaworska, L., & Vojtěch, D. (2021). Effect of alloying elements on the properties of Ti-Al-Si alloys prepared by powder metallurgy. Journal of Alloys and Compounds, 868, Article 159251. https://doi.org/10.1016/j.jallcom.2021.159251

Li, X. Y., Taniguchi, S., Matsunaga, Y., Nakagawa, K., & Fujita, K. (2003). Influence of siliconizing on the oxidation behavior of a γ-TiAl based alloy. Intermetallics, 11(2), 143–150. https://doi.org/10.1016/S0966-9795(02)00193-0

Ma, X. X., Liang, W., Zhao, X. G., & Zhang, F. (2006). Effect of Al2O3 layer on improving high-temperature oxidation resistance of siliconized TiAl-based alloy. Materials Letters, 60(13–14), 1651–1653. https://doi.org/10.1016/j.matlet.2005.11.086

Maki, K., Shioda, M., Sayashi, M., Shimizu, T., & Isobe, S. (1992). Effect of silicon and niobium on oxidation resistance of TiAl intermetallics. In S. H. Whang, D. P. Pope, & C. T. Liu (Eds.), High Temperature Aluminides and Intermetallics (pp. 591–596). Elsevier Ltd. https://doi.org/10.1016/B978-1-85166-822-9.50093-5

Moskal, G., Migas, D., Mendala, B., Kałamarz, P., Mikuśkiewicz, M., Iqbal, A., Jucha, S., & Góral, M. (2021). The Si influence on the microstructure and oxidation resistance of Ti-Al slurry coatings on Ti-48Al-2Cr-2Nb alloy. Materials Research Bulletin, 141, Article 111336. https://doi.org/10.1016/j.materresbull.2021.111336

Pflumm, R., Friedle, S., & Schütze, M. (2015). Oxidation protection of γ-TiAl-based alloys - A review. Intermetallics, 56, 1–14. https://doi.org/10.1016/j.intermet.2014.08.002

Rubacha, K., Godlewska, E., Zawadzka, K., & Dąbrowa, J. (2022). Formation of silicide layers on a Ti-46Al-8Ta alloy in pack cementation and diffusion couple experiments. Surface and Coatings Technology, 429, Article 127860. https://doi.org/10.1016/j.surfcoat.2021.127860

Sun, T., Guo, Z., Cao, J., Liang, Y., & Lin, J. (2023). Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si. Corrosion Science, 213, Article 110980.https://doi.org/10.1016/j.corsci.2023.110980

Wang, Q., Wu, W. Y., Jiang, M. Y., Cao, F. H., Wu, H. X., Sun, D. B., Yu, H. Y., & Wu L. K. (2020). Improved oxidation performance of TiAl alloy by a novel Al–Si composite coating. Surface and Coatings Technology, 381, Article 125126. https://doi.org/10.1016/j.surfcoat.2019.125126

Woźniak, M., Góral, M., & Kościelniak B. (2023). The formation of Al-Si aluminide coatings by pack cementation method on TNM-B1 intermetallic alloy. Advances in Mechanical and Materials Engineering, 40, 79–86. https://doi.org/10.7862/rm.2023.9

Wu, L. K., Wu, J. J., Wu, W. Y., Hou, G. Y., Cao, H. Z., Tang, Y. P., Zhang, H., B., & Zheng G.Q. (2019). High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating. Corrosion Science, 146, 18–27. https://doi.org/10.1016/j.corsci.2018.10.031

Wu, Z., Kou, H., Chen, N., Xi, Z., Fan, J., Tang, B., & Li, J. (2022). Recent developments in cold dwell fatigue of titanium alloys for aero-engine applications: a review. Journal of Materials Research and Technology, 20, 469–484. https://doi.org/10.1016/j.jmrt.2022.07.094

Xiang, Z. D., Rose, S. R., & Datta, P.K. (2003). Codeposition of Al and Si to form oxidation-resistant coatings on γ-TiAl by the pack cementation process. Materials Chemistry and Physics, 80(2), 482–489. https://doi.org/10.1016/S0254-0584(02)00551-5

Xiong, H. P., Mao, W., Xie, Y. H., Ma, W. L., Chen, Y. F., Li, X. H., Li, J. P., & Cheng, Y. Y. (2004). Liquid-phase siliconizing by Al-Si alloys at the surface of a TiAl-based alloy and improvement in oxidation resistance. Acta Materialia, 52(9), 2605–2620. https://doi.org/10.1016/j.actamat.2004.02.008

Zhang, K., Xin, L., Lu, Y., Cheng, Y., Wang, X., Zhu, S., & Wang, F. (2021). Improving oxidation resistance of γ-TiAl based alloy by depositing TiAlSiN coating: Effects of silicon. Corrosion Science, 179, Article 109151. https://doi.org/10.1016/j.corsci.2020.109151

Zhou, C., Xu, H., Gong, S., & Kim, K. Y. (2003) A study of aluminide coatings on TiAl alloys by the pack cementation method. Materials Science and Engineering: A, 341(1–2), 169-173. https://doi.org/10.1016/S0921-5093(02)00197-1