Experimental Research on the Influence of Structural Modifications of Adherends on the Load - Bearing Capacity of Lap Joints of S235JR Steel Sheets
PDF

Keywords

adhesive joints
structural modification
static shear test
S235JR steel

How to Cite

Zielecki, W., Łabno, K., Perłowski, R., Bąk, Łukasz, & Katrňák, T. (2023). Experimental Research on the Influence of Structural Modifications of Adherends on the Load - Bearing Capacity of Lap Joints of S235JR Steel Sheets. Advances in Mechanical and Materials Engineering, 40(1), 5-13. https://doi.org/10.7862/rm.2023.1

Abstract

The paper presents the results of the research determining the impact of structural modifications of adherends on the load capacity of the joints determined in the static shear test. Tests of adhesive lap joints of S235JR steel sheets bonded with Araldite 2014-2 epoxy adhesive are described. The influence of technologically simple structural modifications was investigated; it consisted in making notches and holes at the leading edge of the adherends. These modifications were aimed at bringing about local flexibility of the joint in the sensitive area of stress concentration. Based on experimental studies, it was shown that there is a possibility of increasing the load-bearing capacity of the joint due to the applied modifications; in the most favorable variant, an increase in the load-bearing capacity by 15.9% compared to the base variant was demonstrated. The tests confirmed that the notches filled with the adhesive in the front part of the adherends can significantly improve the strength properties of joint, while the considered modifications in the form of holes do not have a significant impact on the properties of the adherends.
https://doi.org/10.7862/rm.2023.1
PDF

References

Bartczak, B., Mucha, J., & Trzepieciński, T. (2013). Stress distribution in adhesively-bonded joints and the loading capacity of hybrid joints of car body steels for the automotive industry. International Journal of Adhesion and Adhesives, 45, 42–52. https://doi.org/10.1016/j.ijadhadh.2013.03.012

Belingardi, G., Goglio, L., & Tarditi, A. (2002). Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints. International Journal of Adhesion and Adhesives, 22(4), 273–282. https://doi.org/10.1016/S0143-7496(02)00004-0

Davies, P., Sohier, L., Cognard, J. Y., Bourmaud, A., Choqueuse, D., Rinnert, E., Créac’hcadec, R. (2009). Influence of adhesive bond line thickness on joint strength. International Journal of Adhesion and Adhesives, 29(7), 724–736. https://doi.org/10.1016/j.ijadhadh.2009.03.002

Davis, M. J., & Bond, D. (1999). Principles and practise of adhesive bonded structural joints and repairs. International Journal of Adhesion and Adhesives, 19(2-3), 91–105. https://doi.org/10.1016/S0143-7496(98)00026-8

Godzimirski, J. (2002). Wytrzymałość doraźna konstrukcyjnych połączeń klejowych Ultimate strength of structural adhesive joints]. Wydawnictwa Naukowo-Techniczne.

Kadioglu, F., & Adams, R. D. (2015). Flexible adhesives for automotive application under impact loading. International Journal of Adhesion and Adhesives, 56, 73–78. https://doi.org/10.1016/j.ijadhadh. 2014. 08.001

Karachalios, E. F., Adams, R. D., & da Silva, L. F. M. (2013). The behaviour of single lap joints under bending loading. Journal of Adhesion Science and Technology, 27(16), 1811–1827. https://doi.org/10.1080/01694243.2012.761926

Kaye, R. H., & Heller, M. (2002). Through-thickness shape optimisation of bonded repairs and lap-joints. International Journal of Adhesion and Adhesives, 22(1), 7–21. https://doi.org/10.1016/S0143-7496(01)00029-X

Kim, J. S., Kim, C. G., & Hong, C. S. (2001). Practical design of tapered composite structures using the manufacturing cost concept. Composite Structures, 51, 285–299. https://doi.org/10.1016/S0263-8223(00)00145-8

Lang, T., & Mallick, K. (1998). Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion and Adhesives, 18(3), 167–177. https://doi.org/10.1016/S0143-7496(97)00056-0

Lang, T., & Mallick, K. (1999). The effect of recessing on the stresses in adhesively bonded single-lap joints. International Journal of Adhesion and Adhesives, 19(4), 257–271. https://doi.org/10.1016/S0143-7496(98)00069-4

Lucas, F. M. (2011). Design Rules and Methods to Improve Joint Strength. Springer-Verlag. https://doi.org/10.1007/978-3-642-01169-6_27

Mazumdar, S. K., & Mallick, K. (1998). Static and fatigue behavior of adhesive joints in SMC-SMC composites. Polymer Composites, 19(2), 139–146. https://doi.org/10.1002/pc.10084

Rispler, A. R., Tong, L., Steven, G. P., & Wisnom, M. R. (2000). Shape optimisation of adhesive fillets. International Journal of Adhesion and Adhesives, 20(3), 221–231. https://doi.org/10.1016/S0143-7496(99)00047-0

da Silva, L. F. M., das Neves P. J. C., Adams R. D., Spelt, J.K. (2009). Analytical models of adhesively bonded joints – Part I: literature survey. International Journal of Adhesion and Adhesives, 29, 319–330. https://doi.org/10.1016/j.ijadhadh.2008.06.005

da Silva, L. F. M., Ochsner, A., & Adams R. D. (Eds.). (2011). Handbook of adhesion technology. Springer-Verlag.

da Silva, L. F. M., & Adams, R. D. (2007). Techniques to reduce the peel stresses in adhesive joints with composites. International Journal of Adhesion and Adhesives, 27(3), 227–235. https://doi.org/10.1016/j.ijadhadh.2006.04.001

Wang, C. H., Heller, M., & Rose, L. R. F. (1998). Substrate stress concentrations in bonded lap joints. Journal of Strain Analysis for Engineering Design, 33(5), 331–346. https://doi.org/10.1243/0309324981513039

You, M., Yan, Z., Zheng, X., Yu, H., & Li, Z. A. (2007). A numerical and experimental study of adhesively bonded aluminium single lap joints with an inner chamfer on the adherends. International Journal of Adhesion and Adhesives, 28(1-2), 71–76. https://doi.org/10.1016/j.ijadhadh.2007.06.001

Zhao, X., Adams, R. D., da Silva, L. F. M. (2011). Single lap joints with rounded adherend corners: experimental results and strength prediction. Journal of Adhesion Science and Technology, 25(8), 837–856. https://doi.org/10.1163/016942410X520880

Zielecki, W., Kubit, A., Kluz, R., & Trzepieciński, T. (2017). Investigating the influence of the chamfer and fillet on the high-cyclic fatigue strength of adhesive joints of steel parts. Journal of Adhesion Science and Technology, 31(6), 627-644. https://doi.org/10.1080/01694243.2016.1229521

Wang, C. H., Heller, M., & Rose, L. R. F. (1998). Substrate stress concentrations in bonded lap joints. Journal of Strain Analysis for Engineering Design, 33(5), 331–346. https://doi.org/10.1243/0309324981513039

You, M., Yan, Z., Zheng, X., Yu, H., & Li, Z. A. (2007). A numerical and experimental study of adhesively bonded aluminium single lap joints with an inner chamfer on the adherends. International Journal of Adhesion and Adhesives, 28(1-2), 71–76. https://doi.org/10.1016/j.ijadhadh.2007.06.001

Zhao, X., Adams, R. D., da Silva, L. F. M. (2011). Single lap joints with rounded adherend corners: experimental results and strength prediction. Journal of Adhesion Science and Technology, 25(8), 837–856. https://doi.org/10.1163/016942410X520880

Zielecki, W., Kubit, A., Kluz, R., & Trzepieciński, T. (2017). Investigating the influence of the chamfer and fillet on the high-cyclic fatigue strength of adhesive joints of steel parts. Journal of Adhesion Science and Technology, 31(6), 627-644. https://doi.org/10.1080/01694243.2016.1229521