The Influence of Fins on Heat Transfer Performance Under Free Convection in Air
PDF (Język Polski)

Keywords

fins
heat transfer
free convection
thermal power

How to Cite

Tychanicz-Kwiecień, M., Mazur, A., Gil, P., & Gałek, R. (2019). The Influence of Fins on Heat Transfer Performance Under Free Convection in Air. Advances in Mechanical and Materials Engineering, 36(1-2), 93-107. https://doi.org/10.7862/rm.2019.08

Abstract

The article presents preliminary results of thermal parameter measurements of an air-water tubular heat exchanger made of smooth- and finned pipes. The experimental set-up is the equipment of The Department of Thermodynamics at Rzeszow University of Technology. The following parameters have been measured as a function of temperature difference between inlet water temperature and ambient temperature: dissipated thermal power for smooth- and finned pipes and the heat transfer coefficient for a smooth pipe related to the external surface and heat transfer coefficient for a finned pipe related to the overall finned surface. The results indicate that dissipated thermal power increased almost three times for the finned pipe with regard to the smooth pipe. The heat transfer coefficient obtained for a smooth pipe was considerably greater than for a finned pipe.

https://doi.org/10.7862/rm.2019.08
PDF (Język Polski)

References

Acharya S., Dash S.K.: Natural convection heat transfer from a horizontal hollow cylinder with internal longitudinal fins, Int. J. Thermal Sci., 134 (2018) 40-53.

Goodrich S.S., Marcum W.R.: Natural convection heat transfer and boundary layer transition for vertical heated cylinders, Exp. Thermal Fluid Sci., 105 (2019) 367-380.

Gil P.: Synthetic jet Reynolds number based on reaction force measurement, J. Fluids Structures, 81 (2018) 466-478.

Bulliard-Sauret O., Berindei J., Ferrouillat S., Vignal L., Memponteil A., Poncet C., Leveque J.M., Gondrexon N.: Heat transfer intensification by low or high frequency ultrasound: Thermal and hydrodynamic phenomenological analysis, Exp. Thermal Fluid Sci., 104 (2019) 258-271.

Lai F.C.: Electrohydrodynamic-enhanced natural convection in an enclosure by a nonsymmetric electric field, J. Thermophysics Heat Transfer, 33 (2019) 441-448.

Kumar A., Layek A.: Nusselt number and friction factor correlation of solar air heater having twisted-rib roughness on absorber plate, Renewable Energy, vol. 130 (2019) 687-699.

Pasierb A., Schweitzer K.H.: Nowe rozwiązania rur obustronnie żebrowanych z wirowym przepływem medium wewnątrz rury, Rudy Metale, 49 (2004) 521-524.

Jedsadaratanachai W., Boonloi A.: Performance analysis and flow visualization in a round tube heat exchanger inserted with wavy V-ribs, Adv. Mech. Eng., 9 (2017) 1-16.

Zheng N.B., Liu P., Liu Z.C., Liu W., Numerical simulation and sensitivity analysis of heat transfer enhancement in a flat heat exchanger tube with discrete inclined ribs, Int. J. Heat Mass Transfer, 112 (2017) 509-520.

Pandelidis D., Anisimov S.: Analiza konstrukcji wymienników wyparnych na przykładzie wymiennika krzyżowego: wyniki symulacji numerycznej, Rynek instalacyjny, 10 (2014) 64-70.

Hong Y., Du J., Li Q., Xu T., Li W.: Thermal-hydraulic performances in multiple twisted tapes inserted sinusoidal rib tube heat exchangers for exhaust gas heat recovery applications, Energy Conversion Management, 185 (2019) 271-290.

Pal S.K., Bhattacharyya S., Pop I.: A numerical study on non-homogeneous model for the conjugate-mixed convection of a Cu-water nanofluid in an enclosure with thick wavy wall, Appl. Math. Computation, 356 (2019) 219-234.

Eiamsa-ard S., Wongcharee K.: Convective heat transfer enhancement using Ag-water nanofluid in a micro-fin tube combined with non-uniform twisted tape, Int. J. Mech. Sci., 146 (2018) 337-354.

Rao Y., Chen P., Wan CY.: Experimental and numerical investigation of impingement heat transfer on the surface with micro W-shaped ribs, Int. J. Heat Mass Transfer, 93 (2016) 683-64.

Wiśniewski S., Wiśniewski T.S.: Wymiana ciepła, WNT, Warszawa 2000.