Mechanical Properties of Selected Polymer Sandwich Composites
PDF

Keywords

sandwich compiste
mechanical properties
static bending tests
static compression test
static tensile test

How to Cite

Zielińska, P., & Ziaja, W. (2023). Mechanical Properties of Selected Polymer Sandwich Composites. Advances in Mechanical and Materials Engineering, 40(1), 103-111. https://doi.org/10.7862/rm.2023.11

Abstract

The aim of this work was to determine the influence of material and geometric factors of selected sandwich composites on their mechanical properties. The first pair of sandwich materials under consideration were made by the industrial infusion method and consisted of epoxy resin reinforced with 7 layers of glass fabric (skin) with core made of PVC foam or aramid honeycomb. The second pair of materials was prepared manually and consisted of polyester resin reinforced with glass mat (skin) with aramid honeycomb core of varying thicknesses. Mechanical properties were determined in static bending, compression and tensile tests. In each case, the failure mode of the tested composite materials was determined. In the case of composites with epoxy resin skins application of aramid honeycomb core resulted in higher tensile and edgewise compressive strength. For materials with polyester resin skins and honeycomb cores it was found that increase of core thickness yielded higher bending stiffness but the tensile and bending strength were reduced.

https://doi.org/10.7862/rm.2023.11
PDF

References

Antony, M.D., Prakash, A., Jagannatha Guptha, V.L., Sharma, R.S., & Mohan, B. (2012). Influence of cell size on the core shear properties of FRP honeycomb sandwich panels. Materials and Manufacturing Processes, 27, 169-176. https://doi.org/10.1080/10426914.2011.560227

Arbaoui, J., Schmitt, Y., Pierrot, J.L., & Royer, F.X. (2014). Effect of core thickness and intermediate layers on mechanical properties of polypropylene honeycomb multi-layer sandwich structures. Archives of Metallurgy and Materials, 59, 11-16. https://doi.org/10.2478/amm-2014-0002

American Society for Testing and Materials. (2010). Standard test method for flatwise tensile strength of sandwich constructions (Standard No. C297/C297M–04). Retrieved from

https://doi.org/10.1520/C0297_C0297M-04

American Society for Testing and Materials. (2012). Standard test method for facing properties of sandwich constructions by long beam flexure (Standard No. D7249/D7249M-06). Retrieved from DOI: https://doi.org/10.1520/D7249_D7249M-06

American Society for Testing and Materials. (2017). Standard test method for edgewise compressive strength of sandwich construction (Standard No. C364/C364M–07). Retrieved from https://doi.org/10.1520/C0364-99

Banghai, J., Zhibin, L., & Fangyun, L.(2015). Failure mechanism of sandwich beams subjected to three-point bending. Composite Structures, 133, 739-745. https://doi.org/10.1016/j.compstruct.2015.07.056

Boczkowska, A., Kapuściński, J., Lindemann, Z., Witenberg-Perzyk, D., & Wojciechowski, S. (2016). Kompozyty. Oficyna Wydawnicza Politechniki Warszawskiej.

Grabarski, J. (2001). Materiały i kompozyty niemetalowe. Oficyna Wydawnicza Politechniki Warszawskiej.

Greń, K., Szatkowski, P., & Chłopek, J. (2008). Characteristics of failure mechanisms and shear strength of sandwich composites. Composites Theory and Practice, 16(4), 255-259.

Królicka, A., & Trębacki, K. (2017). Próby wytrzymałościowe kompozytów polimerowych. Autobusy: technika, eksploatacja, systemy transportowe, 18(9), 97-100.

Lu, C., Zhao, M., Jie, L., Wang, J., Gao, Y., Cui, X., & Ping Chen, P. (2015). Stress distribution on the composite honeycomb sandwich structure suffered from bending load. Procedia Engineering, 99, 405-412. https://doi.org/10.1016/j.proeng.2014.12.554

Mayer, P., & Kaczmar, W. (2008). Właściwości i zastosowania włókien węglowych i szklanych. Tworzywa Sztuczne i Chemia, 6, 52-56 .

Muc, A., & Nogowczyk, R. (2005). Formy zniszczenia konstrukcji sandwiczowych z okładzinami wykonanymi z kompozytów. Kompozyty, 5(4), 31-35.

Ochelski, S. (2004). Metody doświadczalne mechaniki kompozytów konstrukcyjnych. Wydawnictwo Naukowo-Techniczne.

Rajczyk, M., & Stachecki, B. (2011). Współczesne materiały kompozytowe wybrane kierunki rozwoju technologii. Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 8, 202-211.

Sawal, N., Nazr, A., & Akil, H. (2015). Effect of cell size material on the mechanical properties of honeycomb core structure. International Journal of Science and Research, 4(2), 80-84.

Woźniak, D., & Kukiełka, L. (2014). Kompozyty w technice w aspektach materiałów nowej generacji. Autobusy: technika, eksploatacja, systemy transportowe, 15(6), 292-296.