The Formation of Al-Si Aluminide Coatings by Pack Cementation Method on TNM-B1 Intermetallic Alloy
PDF

Keywords

pack cementation
TiAl
aluminide coatings
Al-Si coatings
oxidation

How to Cite

Woźniak, M., Góral, M., & Kościelniak, B. (2023). The Formation of Al-Si Aluminide Coatings by Pack Cementation Method on TNM-B1 Intermetallic Alloy. Advances in Mechanical and Materials Engineering, 40(1), 79-86. https://doi.org/10.7862/rm.2023.9

Abstract

The TiAl intermetallics are the promising material for aerospace application. According to its insufficient oxidation resistance above 900oC the using of protective coatings is necessary. The diffusion aluminide coatings based on TiAl2 or TiAl3 phases permits to formation of alumina scale on the surface of TiAl alloys. The pack cementation with Si doping is one of the most popular method of this type of coatings production. In present article the influence of Si content in the pack, process time and temperature during pack cementation process were investigated. The thickness of obtained coating was in range 20-50 μm. When Si content was higher the formation of titanium silicides was observed using almost all analysed values of process parameters. The results showed that using of 24 wt. % Si containing pack and process parameters: 4h/950oC enables to obtain the coating characterized by optimal thickness and structure. The porosity and cracks in coatings according to TiAl phases brittleness was observed.

 

https://doi.org/10.7862/rm.2023.9
PDF

References

Bauer, P.P., Klamann, L., Swadźba, R., & Laska, N. (2022). Effect of Si Content on Deposition and High Tem-perature Oxidation of Al-Si Coatings Obtained by Magnetron Sputtering PVD Method. Coatings, 12(6), 859. https://doi.org/10.3390/coatings12060859

Bobzin, K., Brögelmann, T., Kalscheuer, C., & Liang, T. (2018). Al-Si and Al-Si-Y coatings deposited by HS-PVD for the oxidation protection of γ-TiAl. Surface and Coatings Technology, 350, 587–595. https://doi.org/10.1016/j.surfcoat.2018.06.074

Chlupová, A., Heczko, M., Obrtlík, K., Dlouhý, A., Kruml, T. (2020). Effect of heat-treatment on the micro-structure and fatigue properties of lamellar γ-TiAl alloyed with Nb, Mo and/or C. Materials Science and Engineering A, 786, 139427. https://doi.org/10.1016/j.msea.2020.139427

Goral, M., Moskal, G., Swadzba, L., & Hetmańczyk, M. (2011). The Influence of Silicon Amount on Structure of Si Modified Aluminide Coating Deposited on Ti46Al7Nb Alloy by Slurry Method. Key Engineering Materials, 465, 251–254. https://doi.org/10.4028/www.scientific.net/KEM.465.251

Goral, M., Moskal, G., Swadzba, L., & Tetsui, T. (2007), Si-modified aluminide coating deposited on TiAlNb alloy by slurry method. Journal of Achievements in Materials and Manufacturing Processing, 21(1), 75-78.

Jiang, H., Hirohasi, M., Lu, Y., & Imanari, H. (2002). Effect of Nb on the high temperature oxidation of Ti-(0-50 at.%)Al. Scripta Materialia, 46, 639–643. https://doi.org/10.1016/S1359-6462(02)00042-8

Jiang H.-R., Wang Z.-L., Ma W.-S., Feng X.-R., Dong Z.-Q., Liang Z., Yong L. (2008). Effects of Nb and Si on high temperature oxidation of TiAl. Transactions of Nonferrous Metals Society of China, 18(3), 512-517. https://doi.org/10.1016/S1003-6326(08)60090-4

Knaislová, A., Novák, P., Cabibbo, M., Jaworska, L., & Vojtěch, D. (2021). Development of TiAl–Si alloys—a review. Materials, 14(4), 1030. https://doi.org/10.3390/ma14041030

Liu, Z. C., Lin, J. P., Li, S. J., & Chen, G. L. (2002). Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys. Intermetallics, 10(7), 653-659. https://doi.org/10.1016/S0966-9795(02)00037-7

Locci, I. E., Brady, M. P., & Smialek, J. L. (2000). Long Term Oxidation of Model and Engineering TiAl Al-loys. MRS Online Proceedings Library, 646, 444-449. https://doi.org/10.1557/PROC-646-N5.50.1

Lu, X., Li, J., Chen, X., Qiu, J., Wang, Y., Liu, B., Liu, Y., Rashad, M., & Pan, F. (2020). Mechanical, tribologi-cal and electrochemical corrosion properties of in-situ synthesized Al2O3/TiAl composites. Intermetallics, 120, 106758. https://doi.org/10.1016/j.intermet.2020.106758

Moskal, G., Witala, B., & Rozmysłowska, A. (2009). Influence of heat treatment on microstructure of slurry aluminide coatings type TiAlSi obtained on TiAlCrNb alloy. Journal of Achievements in Materials and Manufacturing Processing, 23(2), 204-210.

Musi, M., Galy, B., Stark, A., Schell, N., Hantcherli, M., Monchoux, J. P., Couret, A., Clemens, H., & Spoerk-Erdely, P. (2022). How Si affects the microstructural evolution and phase transformations of intermetallic γ-TiAl based alloys. Materialia, 24, 101475. https://doi.org/10.1016/j.mtla.2022.101475

Novák, P., Michalcová, A., Šerák, J., Vojtěch, D., Fabián, T., Randáková, S., Průša, F., Knotek, V., & Novák, M. (2009). Preparation of Ti-Al-Si alloys by reactive sintering. Journal of Alloys and Compounds, 470(1–2), 123–126. https://doi.org/10.1016/j.jallcom.2008.02.046

Rubacha, K., Godlewska, E., Zawadzka, K., & Dąbrowa, J. (2022). Formation of silicide layers on a Ti-46Al-8Ta alloy in pack cementation and diffusion couple experiments. Surface and Coatings Technology, 429, 127860. https://doi.org/10.1016/j.surfcoat.2021.127860

Swadźba, R., Marugi, K., Pyclik, Ł. (2020a). STEM investigations of γ-TiAl produced by additive manufactur-ing after isothermal oxidation. Corrosion Science, 169, 108617. https://doi.org/10.1016/j.corsci.2020.108617

Swadźba, R., Swadźba, L., Mendala, B., Bauer, P. P., Laska, N., & Schulz, U. (2020b). Microstructure and cy-clic oxidation resistance of Si-aluminide coatings on γ-TiAl at 850 °C. Surface and Coatings Technology, 403, 126361. https://doi.org/10.1016/j.surfcoat.2020.126361

Swadźba, R., Swadźba, L., Mendala, B., Witala, B., Tracz, J., Marugi, K., & Pyclik, Ł. (2017). Characterization of Si-aluminide coating and oxide scale microstructure formed on γ-TiAl alloy during long-term oxidation at 950 °C. Intermetallics, 87, 81–89. https://doi.org/10.1016/j.intermet.2017.04.015

Wang, J, Kong, L., Wu, J., Li, T., Xiong, T. (2015). Microstructure evolution and oxidation resistance of silicon-aluminizing coating on γ-TiAl alloy. Applied Surface Science, 356, 827-836. https://doi.org/10.1016/j.apsusc.2015.08.204

Wendler, B.G., & Kaczmarek, Ł. (2005). Oxidation resistance of nanocrystalline microalloyed γ-TiAl coatings under isothermal conditions and thermal fatigue. Journal of Materials Processing Technology, 164–165, 947–953. https://doi.org/10.1016/j.jmatprotec.2005.02.158

Wu, X. (2006). Review of alloy and process development of TiAl alloys. Intermetallics, 14(10–1), 1114–1122. https://doi.org/10.1016/j.intermet.2005.10.019

Xiang, Z. D., Rose, S. R., & Datta, P. K. (2003). Codeposition of Al and Si to form oxidation-resistant coatings on γ-TiAl by the pack cementation process. Materials Chemistry and Physics, 80(2), 482–489. https://doi.org/10.1016/S0254-0584(02)00551-5

Yang, L., Gao, F., Zhou, Z., Jia, Y., Du, Y., Wang, J., Qiao, Y., Zhu, S., & Wang, F. (2023). Oxidation behavior of the AlN coatings on the TiAl alloy at 900 °C. Corrosion Science, 211, 110891. https://doi.org/10.1016/j.corsci.2022.110891

Zhao, P. -X., Li, X. -B., Xing, W. -W., Chen, B., Ma, Y. -C., & Liu, K. (2023). Cyclic oxidation behavior of Nb/Mn/Si alloying beta-gamma TiAl alloys. Transactions of Nonferrous Metals Society of China, 33(1), 128-140. https://doi.org/10.1016/S1003-6326(22)66095-3