Analysis of Tribological Performance of New Stamping Die Composite Inserts Using Strip Drawing Test
PDF

Keywords

friction
coefficient of friction
composite tool
stamping tool

How to Cite

Żaba, K., Kuczek, Łukasz, Puchlerska, S., Wiewióra, M., Góral, M., & Trzepieciński, T. (2023). Analysis of Tribological Performance of New Stamping Die Composite Inserts Using Strip Drawing Test. Advances in Mechanical and Materials Engineering, 40(1), 55-62. https://doi.org/10.7862/rm.2023.7

Abstract

This article assesses the tribological performance of new composite tool sets for stamping dies. Four sets of composite countersamples were tested. These consisted of polyurethane resin with mineral filler (base variant) and modified with aluminium powder (10wt%) and roving fabric (5wt%). Strip samples for the strip drawing tests were cut from AMS5599 (Inconel 625) corrosion-resistant nickel alloy, AMS5510 (321) corrosion and heat-resistant steel and AMS6061-T4 heat treatable aluminium alloy sheet metals. The influence of the type of sample material on the coefficient of friction (COF) was observed. The smallest values of the COF over the entire range of clamping force values used on AMS5599 and AMS5510 sheets were observed during tests with countersamples made of the base variant of composite. When testing the AMS6061-T4 aluminium alloy sheet, the countersamples modified with roving fabric provided the lowest value of COF, which stabilised at a value of about 0.197 as pressure was increased.

https://doi.org/10.7862/rm.2023.7
PDF

References

Bergweiler, G., Fiedler, F., Kampker, A., & Lichtenthäler, K. (2019). Additively manufactured forming tools in prototype construction (in German). Umformtechnik Blech Rohre Profile.

Bergweiler, G., Fiedler, F., Shaukat, A., & Loffler, B. (2021). Experimental investigation of dimensional precision of deep drawn cups using direct polymer additive tooling. Journal of Manufacturing and Materials Processing, 5(1), 3. https://www.mdpi.com/2504-4494/5/1/3

Birkhold, M., Pauli, F.B., Lechler, A., & Verl, A. (2013). On the development of transformable sheet metal forming tools. IFAC Proceedings Volumes, 46(16), 391-396. https://doi.org/10.3182/20130825-4-US-2038.00040

Domitner, J., Silvayeh, Z., Shafiee Sebet, A., Öksüz, K.I., Pelcastre, L., & Hardell, J. (2021). Characterization of wear and friction between tool steel and aluminum alloys in sheet forming at room temperature. Journal of Manufacturing Processes, 64, 774-784. https://doi.org/10.1016/j.jmapro.2021.02.007

Ersoy-Nürnberg, K., Nürnberg, G., Golle, M., & Hoffmann, H. (2008). Simulation of wear on sheet metal forming tools—An energy approach. Wear, 265(11-12), 1801-1807. https://doi.org/10.1016/ j.wear.2008.04.039

Frank, C. (1999). Polymers as tooling material for deep drawing of sheet metal (in German). PhD thesis. Leibniz University Hannover.

Groche, P., Christiany, M., & Wu, Y. (2019). Load-dependent wear in sheet metal forming. Wear, 422-423, 252-260. https://doi.org/10.1016/j.wear.2019.01.071

Hol, J., Cid Alfaro, M.V., de Rooij, M.B., & Meinders, T. (2012). Advanced friction modeling for sheet metal forming. Wear, 286-287, 66-78. https://doi.org/10.1016/ j.wear.2011.04.004

Kirkhorn, L., Bushlya, V., Andersson, M., & Ståhl, J. E. (2013). The influence of tool microstructure on friction in sheet metal forming. Wear, 302, 1268–1278. https://doi.org/10.1016/ j.wear.2013.01.050

Leal, R., Barreiros F., Alves L. (2017). Additive manufacturing tooling for the automotive industry. International Journal of Advanced Manufacturing Technology, 92, 1671-1676. https://doi.org/10.1007/s00170-017-0239-8

Levy, G.N., Schindel, R., Schleiss, P., Micari, F., & Fratini, L. (2003). On the use of SLS tools in sheet metal stamping. CIRP Annals, 52(1), 249-252. https://doi.org/ 10.1016/S0007-8506(07)60577-0

Liewald, M. & de Souza, J. H. C. (2008). New developments on the use of polymeric materials in sheet metal forming. Production Engineering, 2, 63-72. https://doi.org/10.1007/s11740-008-0077-5

Murtagh, A. M., Lennon, J. J., & Mallon, P. J. (1995). Surface friction effects related to pressforming of continuous fibre thermoplastic composites. Composites Manufacturing, 6, 169–175. https://doi.org/10.1016/ 0956-7143(95)95008-M

Park, Y., & Colton, J.S. (2003). Sheet metal forming using polymer composite rapid prototype tooling. Journal of Engineering Materials and Technology, 125(3), 247-255. https://doi.org/10.1115/1.1543971

Schell, T. (2005). Basic investigations of a new Rapid Tooling technique for sheet metal forming“ (in German). PhD thesis. University of Erlangen-Nürnberg.

Schmoeckel, D., Frontek, H., & von Finckenstein, E. (1986). Reduction of wear on sheet metal forming tools. CIRP Annals, 35(1), 195-198. https://doi.org/10.1016/S0007-8506(07)61869-1

Schuh, G., Bergweiler, G., Bickendorf, P., Fiedler, F. & Cong, C. (2020), Sheet metal forming using additively manufactured polymer tools. Procedia CIRP, 93, 20-25. https://doi.org/10.1016/j.procir.2020.04.013

ten Thije, R. H. W., Akkerman, R., van der Meer, L., & Ubbink, M. P. (2008). Tool-ply friction in thermoplastic composite forming. International Journal of Material Forming, 1, 953–956. https://doi.org/10.1007/ s12289-008-0215-9

Vierzigmann, H.U., Merklein, M., & Engel, U. Friction conditions in sheet-bulk metal forming. Procedia Engineering, 19, 377-382. https://doi.org/10.1016/j.proeng.2011.11.128