RESISTANCE TO PERMANENT DEFORMATION OF THE TLA-MODIFIED MASTIC ASPHALT MIXTURE BASED ON STATIC AND DYNAMIC INDENTATION
JCEEA 69 (2022) Cover page
Full text (PDF)

Keywords

dynamic indentation test
filler-binder ratio
mastic asphalt mixture
permanent deformation
static indentation test
TLA-modified binder

How to Cite

1.
Krzysztof Kołodziej, Lesław Bichajło, Tomasz Siwowski. RESISTANCE TO PERMANENT DEFORMATION OF THE TLA-MODIFIED MASTIC ASPHALT MIXTURE BASED ON STATIC AND DYNAMIC INDENTATION. JCEEA [Internet]. 2022Dec.20 [cited 2024Nov.21];690:27-4. Available from: https://journals.prz.edu.pl/jceea/article/view/886

Abstract

Mastic asphalt mixture (MA) has been particularly popular in recent years for bridge pavements due to many advantages, such as easy application, good waterproofing properties and high durability. However, the drawback of the mastic asphalt mixture in comparison to other asphalt mixtures is its lower resistance to permanent deformation. Additive, such as natural asphalt Trinidad Lake Asphalt (TLA) is often applied to make the mastic asphalt mixture resistant to permanent deformation. Practical experience demonstrates that serious failures may occur if MA pavement design and materials selection is not taken into account sufficiently. Therefore, in this study, the influence of two parameters: the TLA content and bitumen-filler mastic composition described by the filler-binder ratio (f/b), on the rutting resistance of the MA mixture, were evaluated. The rutting resistance of the MA mixtures was evaluated on the basis of static and dynamic indentation tests. Both parameters showed a high correlation with the rutting parameters. The mathematical relationships can be used for the prediction of MA composition in such a way that the final MA mixture meets the relevant requirements of the rutting resistance.

https://doi.org/10.7862/rb.2022.3
Full text (PDF)

References

Bichajło L., Kołodziej K.: Wpływ dodatku asfaltu naturalnego Trynidad Epure na podstawowe cechy asfaltu drogowego, Technika Transportu Szynowego, 2015, vol. 22, pp. 126-130

Cao L.: Experiment Research of Filler-Bitumen Ratio Impact on Asphalt Mixture Performance, Applied Mechanics and Materials, 2013, vol. 361-363, pp. 1851-1856

Chen X., Huang W., Qian Z., Zhang L.:Design principle of deck pavements for long-span steel bridges with heavy-duty traffic in China”, Road Materials and Pavement Design, 2017, vol. 18, pp. 226-239

Feng M., Zhen F., Lilong W.: Asphalt-Aggregate Adhesion Work of Natural Asphalt Modified Asphalt, International Journal of Pavement Research and Technology, 2014 vol. 6, pp. 456-460

Fengler R. Z.,. Osmari P. H, Leite L. F. M.,. Nascimento L. A. H. D,. Fritzen M. A, Aragão F. T. S.: Impact of the addition of Trinidad Lake Asphalt (TLA) on the rheological and mechanical behavior of two asphalt binders, Road Materials and Pavement Design, 2019, vol. 20, pp. 827–840

He R., Zheng S., Chen H., Kuang D.: Investigation of the physical and rheological properties of Trinidad lake asphalt modified bitumen, Construction and Building Materials, 2019, vol. 203, pp. 734–739

Iwański M., Mazurek G.: Influence of F-T Synthetic Wax on Asphalt Concrete Permanent Deformation, Archives of Civil Engineering, 2013, no. 3, pp. 259-312

Judycki J.: Niewłaściwe proporcje ‘wypełniacz-asfalt’ w betonie asfaltowym możliwą przyczyną uszkodzeń nawierzchni, Drogownictwo, 2007, vol. 10, pp. 311-313

Kołodziej K., Bichajło L.: Effect of natural asphalt TLA on mastic asphalt ageing Journal of Civil Engineering, Environment and Architecture JCEEA, 2016, vol. 33, pp. 233-241

Laborhandbuch für Trinidad Naturasphalt. Bremen, Germany: Carl Ungewitter Trinidad Lake Asphalt GmbH & Co, 2013

Lebedev M. S., Kozhukhova N. I.: Rheological characteristics of bitumen mastic depending on composition and filler dispersity, IOP Conf. Series: Journal of Physics: Conf. Series, 2018, vol. 1045, pp. 1-7

Li R., Wang P., Xue B., Pei J.: Experimental study on aging properties and modification mechanism of Trinidad lake asphalt modified bitumen, Construction and Building Materials, 2015, vol. 101, pp. 878-883

Liao M., Chen J., Airey G. D., Wang S.: Rheological behavior of bitumen mixed with Trinidad lake asphalt Construction and Building Materials, 2014 vol. 66, pp. 361–367

Luo S., Qian Z., Yang X., Wang H.: Design of gussasphalt mixtures based on performance of gussasphalt binders, mastics and mixtures, Construction and Building Materials, 2017, vol. 156, pp. 131–141

Mazurek G.: Effect of filler type on non-linear viscoelastic characteristics of asphalt mastic, Archives of Civil Engineering, 2021, vol. 67, pp. 247-259

Mitchell M., Link R., Cao W.-D., Yao Z., Liu S., Cui X.: Performance of composite modified asphalt with Trinidad lake asphalt used as waterproofing material for bridge deck pavement, Journal of Testing and Evaluation, 2009, vol. 37, pp. 463–467

Pokorski P., Radziszewski P., Sarnowski M.: Fatigue life of asphalt pavements on bridge decks, Procedia Engineering, 2016, vol. 153, pp. 556–562

Radziszewski P., Piłat J., Sarnowski M., Kowalski K., Król J.: Influence of high temperature on properties of materials used in bridge asphalt pavement structures, Roads and Bridges - Drogi i Mosty, 2015, vol. 14, pp. 175–191

Šedina J., Valentin J., Benešová L.: Alternative modifications of bituminous binders for mastic asphalt mixtures, IOP Conference Series: Materials Science and Engineering, 2017, vol. 236, pp. 1-9,

Słowik M., Bilski M.: An experimental study of the impact of aging on Gilsonite and Trinidad Epuré modified asphalt binders properties, The Baltic Journal of Road and Bridge Engineering, 2017, vol. 12, pp. 71–81

Superpave Fundamentals Reference Manual, Washington, DC, USA: FHWA, 2000

Teng T. P.: Superpave Mixture Design Guide, Washington, DC, USA: FHWA, 2001

Wang H., Li. G.: Study of factors influencing gussasphalt mixture performance, Construction and Building Materials, 2015, vol. 101, pp. 193–200

Wang H., Li. G.: Study on high-temperature stability of composite gussasphalt concrete, Materials Research Innovations, 2015, vol. 19, pp. 494 -499

Wang M., Hu D., Xiao L., Shang, F.: Developments of Gussasphalt System on Steel Deck Pavement, World Journal of Engineering and Technology, 2017, vol. 5, pp. 141–147

Widyatmoko I., Elliott R.: Characteristics of elastomeric and plastomeric binders in contact with natural asphalts, Construction and Building Materials, 2008, vol. 22, pp. 239–249

Widyatmoko I.: Damages of Orthotropic Bridge Deck Surfacing: Forensic Investigation, Remedial Work and Performance Monitoring, Jurnal Kejuruteraan. 2021, vol. 33, pp. 281–291

WT-2 2014 – Część 1. Nawierzchnie asfaltowe. Mieszanki mineralno-asfaltowe. Wymagania Techniczne. Warszawa, GDDKiA, 2014

Xu S., Hu C., Yu J., Liu R., Zhou X.: Influence of Trinidad Lake Asphalt on the physical and anti-aging properties of petroleum asphalt, Petroleum Science and Technology, 2017, vol. 35, pp. 2194-2200

Zou G., Xu X., Li J., Yu H., Wang C., Sun J.: The effects of bituminous binder on the performance of gussasphalt concrete for bridge deck pavement, Materials, 2020, vol. 13, pp. 1-12

Zou G., Zhang X., Wu C.: Experimental method of fatigue performance of mastic asphalt for bridge deck pavement, The Baltic Journal of Road and Bridge Engineering, 2019, vol. 14, pp. 568–586