LOW-TEMPERATURE PROPERTIES OF RuO2-BASED RESISTORS
PDF (Język Polski)

Keywords

thick film resistors
cryogenic thermometry
measurement resolution
conduction mechanism
magnetoresistance
1/f noise

Abstract

Thick film RuO2 -glass resistors were studied. They were laboratory made, so their composition is well known. The measurements of resistance and 1/f excess noise as a function of temperature in the range of 30 mK - 300 K were performed. Also as a function of magnetic field in the range 0 – 5 T. The RuO2 -glass resistors can be used as a cryogenic temperature sensors due to their high sensitivity and low magnetoresistance. A comparison of these parameters with the parameters of commercial sensors shows that they are the same class instruments. The resistors studied exhibit a large increase of excess noise level in the range of cryogenic temperatures, thus the temperature measurement resolution is limited. The noise measurements allowed to determine the actual measurement resolution of resistive temperature sensors. A critical analysis of conduction mechanisms frequently used to describe RuO2 resistors has also been performed. Measurements of temperature dependence of resistance allow to reject variable range hopping conductivity model for this type of resistors. On the other hand, the noise measurements give a good agreement with a theory within this model of conductivity. For the samples studied in the work a critical concentration of the metallic component in the resistive layer has been defined at which the metal-insulator transition occurs.

https://doi.org/10.7862/re.2015.21
PDF (Język Polski)

References

[1] Affronte M., Campani M., Piccinini S., Tamborin M., Morten B., Prudenziati M., Laborde O.: Low temperature electronic transport in RuO2-based cermet resistors, J. Low Temp. Phys., vol. 109, 1997, pp. 461-475.
[2] Bat’ko I., Flachbart K., Somora M., Vanický D., Design of RuO2-based thermometers for the millikelvin temperature range, Cryogenics, vol. 35, 1995, pp. 105-108.
[3] Bobran K., Kusy A., Stadler A.W., Wilczyński G.: Conduction in RuO2-based thick films, Int. J. Electronics, vol. 78, 1995, pp. 113-119.
[4] Cohen O., Ovadyahu Z.: Resistance noise near the Anderson transition, Phys. Rev. B, vol. 50, 1994, pp. 10442-10449.
[5] Collins D.G., Arshak K.I.: A study of composite Bi2O3, In2O3 and RuO2 planar thick film piezoresistive gauges, Microelectronics J., vol. 27, 1996, pp. 59-65.
[6] Dziedzic A., Golonka L., Licznerski B., Morten B., Prudenziati M.: Technika grubowarstwowa i jej zastosowania, skrypt napisany w ramach programu TEMPUS JEP 3298 i JEN 3298, Wrocław, 1998.
[7] Flachbart K., Pavlík V., Tomašovičová N., Adkins C.J., Somora M., Leib J., Eska G.: Conduction mechanism in RuO2-based thick films, Phys. Stat. Sol. (B), vol. 205, 1998, pp. 399-404.
[8] Grimaldi G., Maeder T., Ryser P., Strässler S.: Model of transport nonuniversality in thick-film resistors, Appl. Phys. Lett., vol 83, 2003, pp.189-191.
[9] Holmes D.S., Courts S.S.: Resolution and accuracy of cryogenic temperature measurements, Temperature: Its Measurement and Control in Science and Industry, J.F. Schooley A/P, New York, vol. 6, 1992, pp. 1225-1230.
[10] Hrovat M., Belavic D., Samardžija Z.: Characterisation of thick film resistor series for strain sensors, J. Eur. Ceram. Soc., vol. 21, 2001, pp. 2001-2004.
[11] Imry Y.: Introduction to mesoscopic physics, Oxford University Press, 1996.
[12] Imry Y.: Possible role of incipient Anderson localization in the resistivities of highly disordered metals, Phys. Rev. Lett., vol. 44, 1980, pp. 469-471.
[13] Kalita W., Mleczko K., Zając K., Żak D.: Thick-film starting system with changeable Q-factor circuit for sodium discharge lamps, Proc. 17th Conference of ISHM Poland, Rzeszów-Solina, September 15-18, 1993, pp. 93-96.
[14] Kogan Sh.: Electron glass: Intervalley transitions and the hopping conduction noise, Phys. Rev. B, 57, 1998, pp. 9736-9744.
[15] Koncki R., Mascini M.: Screen-printed ruthenium dioxide electrodes for pH measurements, Anal. Chem. Acta, vol. 351, 1997, pp. 143-149.
[16] Kozub V.I.: Low-frequency noise due to site energy fluctuations in hopping conductivity, Solid State Commun., 97, 1996, pp. 843-846.
[17] Kusy A., Classical percolation threshold and resistance versus temperature behaviour of RuO2-glass films, Physica B, vol. 240, 1997, pp. 226-241.
[18] Kusy A., Stadler A.W., Mleczko K., Żak D., Pawłowski S., Szałański P., Zawiślak Z., Grabecki G., Plesiewicz W., Dietl T.: Metal-insulator transition in nanocomposities of glass and RuO2, Ann. Phys., vol. 8, 1999 pp. 589-592.
[19] Kusy A., Stadler A.W., Mleczko K., Żak D., Wilczyński G., Szałański P., Zawiślak Z., Grabecki G., Dietl T., Plesiewicz W.: Metal-insulator transition in RuO2-glass films: low-temperature studies, Proc. Int. Conf. on Localization in Solids, Localization’96, Jaszowiec, Poland, August 3-6, 1996, pp. 256-257.
[20] Kusy A.: Struktura, mechanizm przewodnictwa oraz szumy typu 1/f rezystywnych warstw grubych, Wydawnictwo Uczelniane Politechniki Rzeszowskiej, Rozprawy 22, Rzeszów, 1979.
[21] Lake Shore Model 370 AC Resistance Bridge, Instrukcja użytkownika, v. 1.1, 2001.
[22] Li Q., Watson C.H., Goodrich R.G., Haase D.G., Lukefahr H.: Thick film chip resistors for use as low temperature thermometers, Cryogenics, vol. 26, 1986, pp. 467-470.
[23] Manjakkal L., Cvejin K., Kulawik J.: Zaraska K., Szwagierczak D.: A low-cost pH sensor based on RuO2 resistor material, Nano Hybrids, vol. 5, 2013, pp.1-15.
[24] Massey J.G., Lee M.: Low-frequency noise probe of interacting charge dynamics in variable-range hopping boron-doped silicon, Phys. Rev. Lett., 79, 1997, pp. 3986- 3989.
[25] Mleczko K. Identyfikacja przejścia metal-izolator w rezystorach grubowarstwowych RuO2+szkło, rozprawa doktorska, Politechnika Rzeszowska, Rzeszów, 2003.
[26] Mleczko K., Żak. D., Kolek A., Stadler A.W., Szałański P., Zawiślak Z.: Rezystory grubowarstwowe RuO2 + szkło jako kriogeniczne czujniki temperatury, Elektronika, vol. XLVI, nr 2-3, 2005, pp. 54-55.
[27] Möbius A.: The metal-semiconductor transition in amorphous Si1-xCrx films: T 0.19 - contribution to the metallic conductivity, Z. Phys. B, vol. 79, 1990, pp. 265-273.
[28] Mott N.F.: Conduction in non-crystalline materials. III. Localized states in a pseudogap and near extremities of conduction and valence bands, Phil. Mag., 19, 1969, pp. 835-852.
[29] Nicoloso N., LeCorre-Frisch A., Maier J., Brook R. J.: Conduction mechanisms in RuO2-glass composites, Solid State Ionics, 75, 1995, pp. 211-216.
[30] Ogawa T., Fujii M., Asai T., Ikegami A., Kobayashi T.: Application of copper conductor and ruthenium containing oxides-glass resistor to high-frequency hybrid IC’s for a portable cellular radio, IEEE Trans. CHMT, vol. 11, 1988, pp. 211-217.
[31] Paszczyński S., Element grubowarstwowy jako czujnik parametryczny, Zeszyty Naukowe Politechniki Rzeszowskiej nr 58, Rzeszów, 1989.
[32] Pike G.E., Seager C.H.: Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors, J. Appl. Phys., vol. 48, 1977, pp. 5152-5169.
[33] Pokrovskii V.Ya., Savchenko A.K., Tribe W.R., Linfield E.H.: Modulation origin of 1/f noise in two-dimensional hopping, Phys. Rev. B, vol. 64, 2001, s. 201318-1- 4.
[34] Prudenziati, M.: Electrical transport in thick film (cermet) resistors, Electrocomp. Sci. Technol., vol. 10, 1983, pp. 285-293.
[35] Ptak P., Kolek A., Zawiślak Z., Mleczko K., Stadler A.W.: 1/f noise versus magnetic field in RuO2 based thick film resistors, Proc. 26th Int. Spring Seminar on Electronics Technology, ISSE 2003, Stara Leśna, Słowacja, 2003, pp. 196-201.
[36] Ptak P., Kolek A., Zawislak Z., Stadler A.W., Mleczko K.: 1/f noise of the RoxTM sensor, Sens. Actuators A: Physical, 2007.
[37] Ptak P., Kolek A., Zawislak Z., Stadler A.W., Mleczko K.: Noise resolution of RuO2 based resistance thermometers, Rev. Sci. Instr., 76, 2005, pp. 014901-1-6.
[38] Ptak P.: Rozdzielczość szumowa rezystancyjnych czujników temperatury typu RuO2+szkło, rozprawa doktorska, Politechnika Wrocławska, Wrocław, 2007.
[39] Roman J., Pavlík V., Flachbart K., Adkins C.J., Leib J.: Electronic transport in RuO2- based thick film resistors at low temperature, J. Low Temp. Phys., vol. 108, 1997, pp. 373-382.
[40] Rosenbaum R.L., Slutzky M., Möbius A., McLachlan D.: Various methods for determining the critical metallic volume fraction φc at the metal-insulator transition, J. Phys.: Condens. Matter, vol. 6, 1994, pp. 7977-7992.
[41] Sahul R., Tasovski V., Sudarshan T.S.: Ruthenium oxide cryogenic temperature sensors, Sens. and Actuators A, vol. 125, 2006, pp. 358-362.
[42] Scofield J.H.: ac method for measuring low-frequency resistance fluctuation spectra, Rev. Sci. Instrum., vol. 58, 1987, pp. 985-993.
[43] Shklovskii B.I.: 1/f noise in variable range hopping conduction, Phys. Rev. B, vol. 67, 2003, pp. 045201-1-6.
[44] Shtengel K., Yu C.C.: 1/f noise in electron glasses, Phys. Rev. B, vol. 67, 2003, pp. 165106-1-8.
[45] Stanford Research Systems SIM921 AC Resistance Bridge, Instrukcja użytkownika, v.1.41, 2003.
[46] Temperature Measurement and Control – katalog firmy Lake Shore
[47] Watanabe M., Morishita M., Ootuka Y.: Magnetoresistance of RuO2-based resistance thermometers below 0.3 K, Cryogenics, vol. 41, 2001, pp. 143-148.
[48] Willekers R.W., Mathu F., Meijer H.C., Postma H.: Thick film thermometers with predictable R-T characteristics and very low magnetoresistance below 1 K, Cryogenics, vol. 30, 1990, pp. 351-355.
[49] Żak D., Dziedzic A., Kolek A., Stadler A.W., Mleczko K., Szałański P., Zawiślak Z.,: Implementation of RuO2-glass based thick film resistors in cryogenic thermometry, Meas. Sci. Technol., vol. 17, 2006, pp. 22-27.