Abstract
Synthetic hairpin DNA is a promising organic material for biosensors and for preparation of physical qubits for quantum information science. This paper demonstrates the base principles of the hairpin DNA synthesis and its biradical forms generated by ultraviolet radiation. Such radical pairs form initialy entangled 2-qubit singlet spin states.
References
Huang J.,Wu J., Li Z., Biosensing using hairpin DNA probes, Rev Anal Chem 2015; (1-2):1-27.
Marini M. et al. , The structure of DNA by direct imaging, Science Advances vol.1 (2015) ;1:e1500734 28 August 2015 DOI: 10.1126/sciadv.1500734
Clark, M. A., Douglas, M., & Choi, J. (2018). Biology 2e, Chapter 14.2: DNA structure and sequencing, OpenStax, Houston, Teksas.
Bikard D., Loot C., Baharoglu Z., and Di. Mazel, Folded DNA in Action: Hairpin Formation and Biolog-ical Functions in Prokaryotes MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Dec. 2010, p. 570–588 Vol. 74, No. 4, doi:10.1128/MMBR.00026-10
Egli R., Robert Letsinger and the Evolution of Oligonucleotide Synthesis, : ACS Omega 2023, 8, 32222−32230
Watson J.D., Crick F.H.C. Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature (London, U. K.). 1953; 171:737–738.
Michelson A.M., Todd A.R. Nucleotides. XXXII. Synthesis of a dithymidine dinucleotide containing a 3′,5′-internucleotidic linkage. J. Chem. Soc. 1955; 2632–2638.
Khorana H.G., Tener G.M., Moffatt J.G., Pol E.H. A new approach to the synthesis of polynucleotides. Chem. Ind. (Chichester, U. K.). 1956; 1523.
Letsinger R.L., Mahadevan V. Nucleotide chemistry. II. Oligonucleotide synthesis on a polymer sup-port. J. Am. Chem. Soc. 1965; 87:3526–3527.
Eckstein F. Nucleoside phosphorothioates. J. Am. Chem. Soc. 1966; 88:4292–4294.
Agarwal K.L., Buchi H., Caruthers M.H., Gupta N., Khorana H.G., Kleppe K., Kumar A., Ohtsuka E., Rajbhandary U.L., Van D.S.J.H. et al. . Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature. 1970; 227:27–34.
Brown E.L., Belagaje R., Ryan M.J., Khorana H.G. Chemical synthesis and cloning of a tyrosine tRNA gene. Methods Enzymol. 1979; 68:109–151.
Stec W.J., Zon G., Egan W. Automated solid-phase synthesis, separation, and stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J. Am. Chem. Soc. 1984; 106:6077.
Martin P. New access to 2′-O-alkylated ribonucleosides and properties of 2′-O-alkylated oligoribonucleotides. Helv. Chim. Acta. 1995; 78:486–504.
Egli, M.; Manoharan, M. Chemistry, Structure and Function of Approved Oligonucleotide Therapeu-tics. Nucleic Acids Res. 2023, 51, 2529−2573. Oxford University Press.3
Wagenknecht H.-A. Charge Transfer in DNA ( Chapter 4 ), Wiley-VCH Verlag GMBH & Co. KGaA
Olshansky JH, Krzyaniak MD, Young RM, Wasielewski MR. Photogenerated Spin-Entangled Qubit (Radical) Pairs in DNA Hairpins: Observation of Spin Delocalization and Coherence. J Am Chem Soc. 2019 Feb 6;141(5):2152-2160.
Jacob H. Olshansky, Jinyuan Zhang, Matthew D. Krzyaniak, Emmaline R. Lorenzo, and Michael R. Wasielewski, Selectively Addressable Photogenerated Spin Qubit Pairs in DNA Hairpins, Journal of the American Chemical Society 2020 142 (7), 3346-3350
Bittner E.R., Czader A., Quantum Mechanics in Biology: Photoexcitations in DNA, in I. Burghard et.al.(eds), Energy Transfer Dynamics in Biomaterial Systems, Springer Series in Chemical Physics 93, Springer Verlag Berlin Heidelbrg 2009, DOI 10.1007/978-3-642-02306-4_4,
Crespo-Hernández C. E., Cohen B., Kohler B., Base stacking controls excited-state dynamics in A·T DNA. Nature 436, 1141–1144 (2005).
Mani T., Molecular qubits based on photogenerated spin-correlated radical pairs for quantum sensing, Chem. Phys. Rev.. 3 )21301 9( 2022 ); doi 10.1063/5.0084072
Mauritsen H., Long- distance navigation and magnetoreception in migratory animals, Nature 558, 50-59,2018.
Hore P.J., Mauritzen H., The radical par mechanism of magnetoreception, Annu. Rev. Biophys. 18,299- 344 ( 2016)