Abstract
Friction Stir Spot Welding is one of the most contemporary methods of joining metals and alloys in their solid state. The ability to join elements made of aluminum alloys allows for utilizing this method in the manufacturing of aircraft structures while lowering the work load, costs, and weight, without sacrificing or even having better strength parameters than classic methods of joining elements. It ensures constant joint parameters, however it requires the use of optimal welding parameters such as: the rotational speed of the tool, tool delve depth, and welding time. The work presents the results of experiments conducted on 7075-T6 aluminum sheet metal that was 1.8 and 0.8 mm thick. The welding tests were done on a dedicated spot welding machine, while the strength tests consisted of static tensile strength tests. In the final part of the article comparative analysis was made of strength of joint made by RFSSW method and obtained from the resistance welding.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)
References
Badarinarayan H., Q. Yang, S. Zhu. 2009. “Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy”. International Journal of Machine Tools & Manufacture (49): 142–148.
Buffa G., L. Fratini, M. Piacentini. 2008. “On the influence of tool path in friction stir spot welding of aluminum alloys”. Journal of Materials Processing Technology (208): 309–317.
Han L. et. al. 2010. “Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding”. Journal of Materials Processing Technology, vol. 210, (8): 1076–1082.
Kuczmaszewski J. 2011. „Efektywność wytwarzania elementów lotniczych ze stopów aluminium i magnezu”. Komputerowo Zintegrowane Zarządzanie red. R. Knosala, Opole Opole: OÞ cyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją (7–18).
Kudła K., K. Wojsyk, K. Adamus. 2013. “The properties of spot-welded joints produced by the FSSW and RFSSW methods”. Obróbka Plastyczna Metali Vol. XXIV (3): 193–203.
Montag T. et. al. 2014. “Influence of Tool Wear on Quality Criteria for Refill Friction Stir Spot Welding (RFSSW) Process”. Procedia CIRP (24): 108–113.
Rudawska A., A. Góra, T. Warda. 2014. „Wybrane zagadnienia wytrzymałości połączeń zgrzewanych blach aluminiowych i tytanowych”. Technologia i Automatyzacja Montażu (2): 61–65.
Tutar M. et. al. 2014. “The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array”. Materials and Design (63): 789–797.
Yang H.G., H.J. Yang. 2013. “Experimental Investigation on Refill Friction Stir Spot Welding Process of Aluminum Alloys”. Applied Mechanics and Materials, Vol. 345, 243–246.
Yang X.W., T. Fu, W.Y. Li. 2014. “Friction Stir Spot Welding: A Review on Joint Macro and Microstructure, Property and Process Modelling”. Advances in Materials Science and Engineering Volume, Article ID 697170.
Yanga Q. et. al. 2010. “Material ß ow during friction stir spot welding”. Materials Science and Engineering (527): 4389–4398.
Zhang Z. et. al. 2011. “Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy”. Materials and Design (32): 4461–4470.