Analysis of the properties of orthotropic composites in terms of their use in airframe repairs
PDF

Keywords

orthotropic composite
mechanical properties
impact strength

How to Cite

Arkuszyńska, A., Godzimirski, J., & Rośkowicz, M. (2023). Analysis of the properties of orthotropic composites in terms of their use in airframe repairs. Technologia I Automatyzacja Montażu (Assembly Techniques and Technologies), 121(3), 3-12. https://doi.org/10.7862/tiam.2023.3.1

Abstract

The aim of the research was to determine the basic strength properties of orthotropic composites in terms of their use in the repair of aircraft airframes. The objects of the tests were three types of composites reinforced with carbon fibers: produced using the wet method with a thickness of 2.5 mm, commercial with a thickness of 2 mm and commercial with a thickness of 7.3 mm. Specimens cut out from the first two types of materials were subjected to a static tensile test with a force applied in the direction of the fibers and at an angle of 45°, which enabled the determination of tensile strength and modulus of elasticity. Specimens made of 7.3 mm thick composite were subjected to four-point bending and tensile tests to determine Young's modulus, compression and impact strength, also taking into account two directions of load application. The values of stresses and Young's modulus determined in this way indicate much lower strength and stiffness of orthotropic composites apart from the reinforcement fibers’ directions, which is the basis for replacing them with quasi-isotropic composites in repairs of aircraft airframes.

https://doi.org/10.7862/tiam.2023.3.1
PDF

References

Bieniaś J. (2002). Struktura i właściwości materiałów kompozytowych. Lublin: Wydawnictwo Politechniki Lu- belskiej.

Patel P. M., Patel H. N., Kotech S. D. (2013). “Properties of Carbon Fiber and its Applications”. International Journal of Engineering Research & Technology 2(11): 554-557.

Heslehurst R. B. (2014). Defects and damage in composite materials and structures. Boca Raton: CRC Press.

Pawlak A. M., Górny T., Dopierała Ł., Paczos P.. (2022). “The Use of CFRP for Structural Reinforcement – Literature Review”. Metals 12. 1470.

Carlsson L. A., Adams D. F., Pipes B. (2013). “Basic Experimental Characterization of Polymer Matrix Com- posite Materials”. Polymer Reviews 53(2): 277-302.

Królikowski W. (2017). Polimerowe kompozyty konstruk- cyjne. Warszawa: Wydawnictwo Naukowe PWN.

Oku T. (2003). “Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology - Chapter 33”. Car- bon/Carbon Composites and Their Properties. 523-544.

Komorek A., Przybyłek P. (2012). “Examination of the influence of cross-impact load on bend strength properties of composite materials used in aviation”. Maintenance and Reliability 14 (4): 265-269.

Sarasini F., Tirillo J., D'Altilia S., Valente T., Santulli C., Touchard F. (2016). “Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact”. Composites Part B: Engineering 91: 144-153.

Halliwell S. (2021). Repair of Fibre Reinforced Polymer (FRP) Structures. National Composites Network.

Alberdi A., Suárez A., Artaza T., Escobar-Palafox G. A., Ridgway K. (2013). “Composite Cutting with Abrasive Water Jet”. Procedia Engineering 63: 421-429.

Pasiecznik W.A., Stepanienko S.A. (2017). “Quality assurance of drilling in CFRP by combined drills”. Technologia i Automatyzacja Montażu 97 (3): 38-41.

Romoli L., Lutey A. H. A. (2019). “Quality monitoring and control for drilling of CFRP laminates”. Journal Manufacturing Processes 40: 16-26.

Galińska A. (2020). “Mechanical Joining of Fiber Reinforced Polymer Composites to Metals - A Review. Part I: Bolted Joining”. Polymers 12(10): 1-48.

Shishesaz M., Hosseini M. (2018). “A review on stress distribution, strength and failure of bolted composite joints”. Journal of Computational Applied Mechanics 49(2): 415-429.

German J. (1996). Podstawy mechaniki kompozytów włóknistych. Kraków: Wydawnictwo Politechniki Kra- kowskiej.

Gay D. (2014). Composite materials: Design and applications, Third Edition. Boca Raton: CRC Press/ Taylor & Francis Group.

Ochelski S., Gotowicki P., Bogusz P. (2008). „Expe- rimental support for numerical simulations of energy absorbing structures”. Journal of KONES 15(1): 183-217.

Duernberger E., MacLeod Ch., Lines D. (2023). “Fibre volume fraction screening of pultruded carbon fibre reinforced polymer panels based on analysis of anisotropic ultrasonic sound velocity”. Composites Part B: Engi- neering 254. 110577.

Boyao W., Bin H., Zhanwen W., Shengli Q., Daijun Z., Guofeng T., Dezhen W. (2021). “Enhanced Impact Properties of Hybrid Composites Reinforced by Carbon Fiber and Polyimide Fiber”. Polymers 13 (16). 2599.