Analysis and Modeling of Design Problems in the Context of Random Technological Changes
PDF

Keywords

Technological Process Modeling, Random Technological Changes, Design Problem Analysis, Process Optimization, Critical Time Factor

How to Cite

Knast, P. (2025). Analysis and Modeling of Design Problems in the Context of Random Technological Changes. Technologia I Automatyzacja Montażu (Assembly Techniques and Technologies), 127(1), 22-53. https://doi.org/10.7862/tiam.2025.1.3

Abstract

This paper presents a comprehensive methodology for modeling and analyzing complex design problems amidst random technological changes, developed through nearly three decades of international industrial research and practice. The evolution of design tools from traditional drawing boards in the 1980s to advanced 3D CAD systems today, combined with the author’s extensive global work experience, has informed this methodology. The proposed approach involves four critical phases: data collection, envisioning solutions, translating vision into computer models, and system implementation and refinement. Central to this methodology is the consideration of time as the main parameter for describing reality and random phenomena. By understanding time not only as a linear measure but as a multidimensional variable influencing all aspects of design and technological processes, the methodology addresses the inherent unpredictability and variability in modern engineering contexts. This method is designed to adapt to dynamic social, technical, economic, and legal conditions, ensuring robustness and flexibility. The paper concludes with a discussion on how this methodology can be seamlessly integrated into both workplace practices and educational curricula, emphasizing the importance of historical data and continuous improvement for future technological advancements.

https://doi.org/10.7862/tiam.2025.1.3
PDF

References

World Intellectual Property Indicators 2021. (2022). WIPO Publication No. 941E/21. Geneva, Switzerland: World Intellectual Property Organization. ISBN: 978-92-805-3329-3.

Galindo-Rueda, F., & Verger, F. (2016). OECD Science, Technology and Industry Working Papers: OECD Taxonomy of Economic Activities Based on R&D Intensity. OECD. https://doi.org/10.1787/5jlv73sqqp8r-en

Parente, D. E., & Osborn, J. R. (1994). Alex F. Osborn (24 May 1888–May 5, 1966). In E. Applegate (Ed.), The Ad Men and Women: A Biographical Dictionary of Advertising (pp. 237–246). Westport, CT: Greenwood Press. ISBN: 0-313-27801-6

Trott, P., Hartmann, D., van der Duin, P., Scholten, V., & Ortt, R. (2016). Managing Technology Entrepreneurship and Innovation (p. 63). Oxon: Routledge. ISBN: 9780415677219

Du, X., & Chen, W. (2004). Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design. Journal of Mechanical Design, 126(2), 225-233. https://doi.org/10.1115/1.1649968

Platt, J. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Technical Report MSR-TR-98-14, 21 April, 1998. Retrieved from https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297. Boston: Kluwer Academic Publishers. Retrieved from http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf

Chang, C.-C., & Lin, C.-J. (2011). A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199

Proofwiki.org. (n.d.). Augustus De Morgan. Retrieved November 10, 2010, from https://proofwiki.org/wiki/Mathematician:Augustus_De_Morgan

McAllister, W. (n.d.). DeMorgan's theorem for basic gates. Retrieved November 10, 2022, from https://spinningnumbers.org/a/demorgan3.html

Boole, G. (2011). An Investigation of the Laws of Thought, On Which Are Founded the Mathematical Theories of Logic and Probabilities. Cambridge University Press. (Original work published 1854). ISBN: 9780511693090. https://doi.org/10.1017/CBO9780511693090

Sandras, W. A., & Goddard, W. E. (1989). Just-in-Time: Making It Happen: Unleashing the Power of Continuous Improvement. Wiley. ISBN-10: 0471132667

Hirano, H. (2009). JIT Implementation Manual: The Complete Guide to Just-in-Time Manufacturing, Second Edition (6-Volume Set). Productivity Press. ISBN-10: 1420090135

Ohno, T. (2012). Taiichi Ohno's Workplace Management: Special 100th Birthday Edition. McGraw Hill. ISBN-10: 0071808019

Monden, Y. (2011). Toyota Production System: An Integrated Approach to Just-In-Time (4th ed.). Productivity Press. ISBN-13: 978-1439820971

Ohno, T. (1988). Toyota Production System: Beyond Large-Scale Production. Productivity Press. ISBN-10: 0915299143

Japan Management Association. (1989). Kanban Just-in Time at Toyota. Productivity Press. ISBN-10: 0915299488

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit. Addison-Wesley Professional. ISBN-10: 0321150783

Poppendieck, M., Poppendieck, T. D., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit. Addison Wesley. ISBN-10: 0321150783

Brook, Q. (2010). Lean Six Sigma and Minitab: The Complete Toolbox Guide for All Lean Six Sigma Practitioners (3rd ed.). OPEX Resources Ltd. ISBN-10: 0954681363

Smith, B. (2022). Retrieved November 11, 2022, from https://www.leansixsigmadefinition.com/glossary/bill-smith/

About Motorola University: The Inventors of Six Sigma. (2022). Retrieved November 11, 2022, from https://web.archive.org/web/20051106025733/http://www.motorola.com/content/0,,3079,00.html

Wireman, T. (2005). Developing Performance Indicators for Managing Maintenance (2nd ed.). Industrial Press, Inc. ISBN-10: 0831132442

Palmer, R. (2019). Maintenance Planning and Scheduling Handbook (4th ed.). McGraw Hill. ISBN-10: 1260135284

BS EN 15341:2019. (2019). Maintenance. Maintenance Key Performance Indicators.

Fitzgibbon, C. (1990). Performance Indicators Cl (BERA Dialogues). Routledge. ISBN-10: 1853590932

Marr, B. (2012). Key Performance Indicators (KPI): The 75 Measures Every Manager Needs to Know. Financial Times Prentice Hall. ISBN-10: 0273750119

BR, R. K., Agarwal, A., & Sharma, M. K. (2016). Lean management – a step towards sustainable green supply chain. Competitiveness Review, 26(3). https://doi.org/10.1108/CR-05-2015-0040

Brase, C. H., & Brase, C. P. (2006). Understanding Basic Statistics (4th ed.). Houghton Mifflin. ISBN-10: 0618632271

Mizuno, S., & Bodek, N. (1979). The Matrix Diagram. Productivity Press. ISBN: 9781003070450

Harrington, H. J. (2016). Matrix Diagram/Decision Matrix. In The Innovation Tools Handbook, Volume 3 (ISBN 9781315367682). Productivity Press.

Yuece, I. (2012). SWOT Analysis of McDonald’s and Derivation of Appropriate Strategies. GRIN Verlag. ISBN-10: 3656295360

Fine, L. G. (2009). The SWOT Analysis: Using Your Strength to Overcome Weaknesses, Using Opportunities to Overcome Threats. CreateSpace Independent Publishing Platform. ISBN-10: 1449546757

Phoresia Publications. (2020). Ishikawa Diagram: Large & Blank Ishikawa Diagram Templates. Independently published. ISBN-13: 979-8578443282

Ishikawa, K. (1985). What is Total Quality Control? Editorial. ASIN: B001K4WTRW

Serrat, O. (2017). The Five Whys Technique. In Knowledge Solutions. Springer. ISBN: 978-981-10-0983-9. https://doi.org/10.1007/978-981-10-0983-9_32

Dekking, F. M., Kraaikamp, C., Lopuhaä, H. P., & Meester, L. E. (2005). A Modern Introduction to Probability and Statistics: Understanding Why and How. Springer. ISBN-10: 1852338962

Blokdyk, G. (2017). 7 Wastes: A Clear and Concise Reference. CreateSpace Independent Publishing Platform. ISBN-10: 197835438X

Hessing, T. (n.d.). Affinity Diagram (or K-J method). Six Sigma Study Guide. Retrieved from https://sixsigmastudyguide.com/affinity-diagram/

Parmenter, D. (2019). Key Performance Indicators: Developing, Implementing, and Using Winning KPIs (4th ed.). Wiley. ISBN-10: 1119620775

Pratt, D. J. (1995). British standard (BS) 5750--quality assurance?. Prosthetics and Orthotics International, 19(1), 31-36. https://doi.org/10.3109/03093649509078229

ISO 9000 family Quality management. (n.d.). Retrieved from https://www.iso.org/iso-9001-quality-management.html

Process Frameworks. (n.d.). Retrieved from https://www.apqc.org/process-frameworks

About APQC. (n.d.). Your Source for Unbiased Research. Retrieved from https://www.apqc.org/about

George, S., & Weimerskirch, A. (1998). Total Quality Management: Strategies and Techniques Proven at Today's Most Successful Companies (2nd ed.). John Wiley & Sons. ISBN-10: 0471191744

Foster, T. (2003). Managing Quality: An Integrative Approach. Prentice Hall. ISBN: 0131302663

Deming, W. E. (1990). Sample Design in Business Research. Wiley-Interscience. ISBN-10: 0471523704

Deming, W. E. (2010). Some Theory of Sampling. Dover. (Original work published 1950). ISBN-10: 048664684X

Swamidass, P. M. (Ed.). (2000). Deming Cycle (PDCA). In Encyclopedia of Production and Manufacturing Management (p. 171). Springer. https://doi.org/10.1007/1-4020-0612-8_22

Savant, S. (2018). Plan Do Check Act: Project Execution Essentials Handbook (Lean Six Sigma Project Execution Essentials). Independently published. ISBN-10: 1717763804

Deming, W. E. (n.d.). Deming's 14 Points. Retrieved from https://www.uthsc.edu/its/business-productivity-solutions/lean-uthsc/deming.php

The Deming Institute. (n.d.). Retrieved from https://deming.org/explore/fourteen-points/

AXELOS Limited. (2017). Managing Successful Projects with PRINCE2. The Stationery Office. ISBN-10: 0113315333

PRINCE2® Project Management Certifications. (n.d.). Retrieved from https://www.axelos.com/certifications/propath/prince2-project-management

Colenso, M. (1999). Kaizen Strategies for Successful Organizational Change: Enabling Evolution and Revolution Within The Organization. Financial Times Prentice Hall. ISBN-10: 0273639854

Villafuerte, J., Miller, J., & Wroblewski, M. (2013). Creating a Kaizen Culture: Align the Organization, Achieve Breakthrough Results, and Sustain the Gains. McGraw-Hill Professional Publishing. ISBN-10: 0071826858

Does, R. J., Roes, C. B., & Trip, A. (1999). Statistical Process Control in Industry: Implementation and Assurance of SPC (Mathematical Modelling: Theory and Applications). Springer. ISBN-10: 0792355709

Grant, E. L., & Leavenworth, R. S. (1996). Statistical Quality Control (7th ed.). McGraw-Hill. ISBN-10: 0078443547

QFD Institute. (n.d.). Quality Function Deployment. Retrieved November 11, 2022, from http://www.qfdi.org/

Kenett, R. S., & Salini, S. (2012). Modern Analysis of Customer Surveys: With Applications Using R. Wiley. ISBN-10: 0470971282

Grigoroudis, E., & Siskos, Y. (2010). Customer Satisfaction Evaluation, Methods for Measuring and Implementing Service Quality. Springer. ISBN: 978-1-4614-2502-1. https://doi.org/10.1007/978-1-4419-1640-2

Hayes, B. E. (2008). Measuring Customer Satisfaction and Loyalty: Survey Design, Use, and Statistical Analysis Methods (3rd ed.). ASQ Quality Press. ISBN-10: 0873897439

Bluestein, A., Moriarty, M., & Sanderson, R. (1999). Customer Satisfaction Audit. Financial Times Prentice Hall. ISBN-10: 0273647075

Huang, G., & Wang, H. (2014). Improving the Predictive Validity of NPS in Customer Satisfaction Surveys. In P. L. P. Rau (Ed.), Cross-Cultural Design. CCD 2014. Lecture Notes in Computer Science, vol 8528 (pp. 355-364). Springer, Cham. https://doi.org/10.1007/978-3-319-07308-8_44

Kristensen, K., & Eskildsen, J. (2014). Is the NPS a trustworthy performance measure? The TQM Journal, 26(2), 202-214. https://doi.org/10.1108/TQM-03-2011-0021

Blokdyk, G. (2022). Customer Effort Score: A Complete Guide. 5STARCooks. ISBN-10: 0655446249

Dixon, M., Toman, N., & DeLisi, R. (2013). The Effortless Experience: Conquering the New Battleground for Customer Loyalty. Portfolio. ISBN-10: 1591845815

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response Surface Methodology: Process and Product Optimization Using Designed Experiments (3rd ed.). John Wiley & Sons. ISBN-10: 0470174463

Santner, T. J., Williams, B. J., & Notz, W. I. (2019). The Design and Analysis of Computer Experiments (Springer Series in Statistics) (2nd ed.). Springer. ISBN-10: 149398845X

Legendre, A.-M. (1805). Nouvelles Méthodes pour la Détermination des Orbites des Comètes. Paris: Chez Firmin Didot. Retrieved from https://babel.hathitrust.org/cgi/pt?id=nyp.33433069112559&view=1up&seq=28

Legendre, A.-M. (2012). Nouvelles Méthodes Pour La Détermination Des Orbites Des Comètes (French Edition). Ulan Press. ASIN: B005G7U8HM

Bos, L. P., & Salkauskas, K. (1989). Moving least-squares are Backus-Gilbert optimal. Journal of Approximation Theory, 59(3), 267-275.

Levin, D. N. (1998). The approximation power of moving least-squares. Mathematics of Computation, 67(224), 1517–1531. https://doi.org/10.1090/S0025-5718-98-00974-0

Monk, J. D. (2012). Mathematical Logic (Graduate Texts in Mathematics, 37). Springer-Verlag New York Inc. ISBN: 9781468494549

Monk, J. D., & Bonnet, R. (1989). Handbook of Boolean Algebras. North-Holland. ISBN-13: 978-0444871534

Gauss, C. F. (n.d.). Adapted from MacTutor History of Mathematics archive. Retrieved November 10, 2022, from https://www.uvm.edu/~matc/Gauss.html

Wawrzynek, J. (2007). Metody opisu i wnioskowania statystycznego [Methods of Statistical Description and Inference]. Wrocław: Wydawnictwo Akademii Ekonomicznej im. Oskara Langego. ISBN: 978-83-7011-859-4.

Bingham, N. H., & Fry, J. M. (2010). Regression: Linear Models in Statistics (Springer Undergraduate Mathematics Series). Springer. ISBN: 978-1-84882-969-5. https://doi.org/10.1007/978-1-84882-969-5

Sen, A., & Srivastava, M. (1990). Regression Analysis Theory, Methods, and Applications. Springer-Verlag New York Inc. ISBN-13: 978-1-4612-8789-6

Taylor, J., & Hamilton, S. (1972). Some tests of the Vaníček Method of spectral analysis. Astrophysics and Space Science, 17, 357–367. https://doi.org/10.1007/BF00642907

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing (3rd ed.). Cambridge University Press. ISBN: 9780521880688

Stein, E. M., & Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press. ISBN-13: 978-0691080789

Weisstein, E. W. (n.d.). Fourier Series. From MathWorld -- A Wolfram Web Resource. Retrieved November 10, 2022, from https://mathworld.wolfram.com/FourierSeries.html

Krige, D. G. (2015). National Academies of Sciences, Engineering, and Medicine. In Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. https://doi.org/10.17226/21785

Olea, R. A. (1996). Kriging: Understanding allays intimidation. Fluoride, 29(3).

Robinson, G. K. (1991). That BLUP is a Good Thing: The Estimation of Random Effects. Statistical Science, 6(1), 15-32. https://doi.org/10.1214/ss/1177011926

Stanek, E. J. (1999). Why not routinely use best linear unbiased predictors (BLUPs) as estimates of cholesterol, per cent fat from kcal and physical activity? Statistics in Medicine, 18(21), 2943-2952. https://doi.org/10.1002/(SICI)1097-0258(19991115)18:21<2943::AID-SIM241>3.0.CO;2-0

Zund, J. (2002). George David Birkhoff and John von Neumann: A Question of Priority and the Ergodic Theorems, 1931–1932. Historia Mathematica, 29(2), 89-122. https://doi.org/10.1006/hmat.2001.2338

Metropolis, N. C. (n.d.). Science World. Retrieved November 10, 2022, from https://scienceworld.wolfram.com/biography/Metropolis.html

Reed, B. C. (2020). Manhattan Project. Springer Nature Switzerland AG. ISBN: 978-3-030-45733-4. https://doi.org/10.1007/978-3-030-45734-1

Shreider, Y. A. (1966). The Monte Carlo Method: The Method of Statistical Trials. Elsevier. ISBN: 978-0-08-011088-2

Haigh, T., Priestley, M., & Rope, C. (2014). Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947-1948. IEEE Annals of the History of Computing, 36(3), 42-56. https://doi.org/10.1109/MAHC.2014.40

Rubinstein, R. Y., & Kroese, D. P. (2016). Simulation and the Monte Carlo Method (3rd ed.). Wiley. ISBN-13: 978-1118632161

Barbu, A., & Zhu, S.-C. (2020). Monte Carlo Methods. Springer. ISBN-13: 978-9811329708

Manno, I. (1999). Introduction to the Monte-Carlo Method. Akademiai Kiado. ISBN-13: 978-9630576154. https://doi.org/10.1016/C2013-0-01870-1

Markov, A. A. (n.d.). Worldcat.org. Retrieved November 10, 2022, from https://worldcat.org/identities/lccn-n81018668/

Chen, S., Dick, J., & Owen, A. B. (2011). Consistency of Markov chain quasi-Monte Carlo on continuous state spaces. Annals of Statistics, 39(2), 673-701. https://doi.org/10.1214/10-AOS831

Hanada, M., & Matsuura, S. (2022). MCMC from Scratch: A Practical Introduction to Markov Chain Monte Carlo. Springer. ISBN-13: 978-9811927140

Berg, B. A. (2004). Markov Chain Monte Carlo Simulations and Their Statistical Analysis: With Web-Based Fortran Code. Wspc. ISBN-10: 9812389350

Yule, G. U., & Filon, L. N. G. (1936). Karl Pearson. 1857–1936. Obituary Notices of Fellows of the Royal Society, 2(5), 72–110. https://doi.org/10.1098/rsbm.1936.0007

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11).

Fearn, T. (2020). Our History. Retrieved November 10, 2022, from https://www.ucl.ac.uk/statistics/edi-wellbeing/edi-committee/our-history

Jolliffe, I. T. (2002). Principal Component Analysis (Springer Series in Statistics) (2nd ed.). Springer. ISBN-10: 0387954422

Naik, G. R. (2018). Advances in Principal Component Analysis (1st ed.). Springer. ISBN-10: 9811067031

Hotelling, H. (1931). The Generalization of Student's Ratio. Annals of Mathematical Statistics, 2(3), 360-378. https://doi.org/10.1214/aoms/1177732979

Kotz, S. (Ed.), & Johnson, N. L. (Ed.). (1993). Breakthroughs in Statistics: Foundations and Basic Theory (Springer Series in Statistics). Springer. ISBN-10: 0387940375

Hotelling's T squared. (n.d.). National Institute of Standards and Technology. Retrieved November 10, 2022, from https://www.itl.nist.gov/div898/handbook/pmc/section5/pmc543.htm

Wichern, D. W., & Johnson, R. A. (1998). Applied Multivariate Statistical Analysis (Subsequent ed.). Pearson College Div. ISBN-13: 978-0138341947

Watkins, C., & Marenka, S. (1994). Virtual Reality Excursions with Programs in C. Academic Press Inc. ISBN: 0-12-737865-0

Diez, D. M., Barr, C. D., & Çetinkaya-Rundel, M. (2014). Introductory Statistics with Randomization and Simulation. CreateSpace Independent Publishing Platform. ISBN-10: 1500576697

Li, P., Wang, Y.-C., & Zhang, J.-Z. (2010). All-optical fast random number generator. Optics Express, 18(19). https://doi.org/10.1364/OE.18.020360

Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or Least Value of a Function. The Computer Journal, 3(3), 175-184. https://doi.org/10.1093/comjnl/3.3.175

Surhone, L. M. (2010). Rosenbrock Function. Betascript Publishing. ISBN-10: 6131256039

Thackray, A., Brock, D. C., & Jones, R. (2015). Moore's Law: The Life of Gordon Moore, Silicon Valley's Quiet Revolutionary. Basic Books. ISBN-10: 0465055648

Gordon Moore: The man whose name means progress. (2022). IEEE Spectrum. Retrieved November 10, 2022, from https://spectrum.ieee.org/gordon-moore-the-man-whose-name-means-progress

Loeffelholz, B. J. (2012). Neural Extensions to Robust Parameter Design. BiblioScholar. ISBN-10: 1288311583

Mori, T. (2011). Taguchi Methods: Benefits, Impacts, Mathematics, Statistics, and Applications. ASME Press. ISBN-10: 079185969X

Taguchi, G. (1992). Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream (ASME Press Series on International Advances in Design Productivity). ASME Press. ISBN-10: 0791800288

Burges, C. J. C. (2010). Dimension Reduction: A Guided Tour (Foundations and Trends(r) in Machine Learning). Now Publishers Inc. ISBN-10: 1601983786

Youn, B. D., Xi, Z., & Wang, P. (2008). Eigenvector dimension reduction (EDR) method for sensitivity-free probability analysis. Structural and Multidisciplinary Optimization, 37, 13-28. https://doi.org/10.1007/s00158-007-0210-7

Gorban, A. N., Kégl, B., Wunsch, D. C., & Zinovyev, A. Y. (2008). Principal Manifolds for Data Visualization and Dimension Reduction. Lecture Notes in Computational Science and Engineering (LNCSE, vol 58). Springer. ISBN: 978-3-540-73750-6

Kovvali, N. (2011). Theory and Applications of Gaussian Quadrature Methods (Synthesis Lectures on Algorithms and Software in Engineering). Springer. ISBN-10: 3031003896

Kengeri Thayappa, S. (2016). Generalised Gaussian Quadrature in Finite Element Method. LAP LAMBERT Academic Publishing. ISBN-10: 3659978124

Pan, B., & Cui, W. (2020). Multidisciplinary Design Optimization and Its Application in Deep Manned Submersible Design. Springer. ISBN-10: 981156454X

Li, C., Huang, M., Li, W., Wang, N., & Fu, J. (2022). Optimization of an induction motor for loss reduction considering manufacturing tolerances. Structural and Multidisciplinary Optimization, 65(7). https://doi.org/10.1080/0305215X.2021.1928110

Youn, B. D. (2004). Adaptive probability analysis using an enhanced hybrid mean value (HMV+) method. Structural and Multidisciplinary Optimization, 29(2), 134-148. https://doi.org/10.1007/s00158-004-0452-6

Fletcher, R. (2000). Practical Methods of Optimization (2nd ed.). John Wiley & Sons, Ltd. ISBN: 9780471915478

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. (1994). CMMI.: Guidelines for Process Integration and Product Improvement (1st ed.). Addison-Wesley Professional. ISBN-10: 0201546647

Chrissis, M. B. (2007). CMMI.: Guidelines for Process Integration and Product Improvement (2nd ed.). Addison Wesley. ISBN-10: 9812382380

Tier, R. (2017). Markov Models: Understanding Markov Models and Unsupervised Machine Learning in Python with Real-World Applications. CreateSpace Independent Publishing Platform. ISBN-10: 1544657285

Chapmann, J. (2017). Markov Models: Introduction to Markov Chains, Hidden Markov Models and Bayesian Networks (Advanced Data Analytics). CreateSpace Independent Publishing Platform. ISBN-10: 1978304870

Rice, S. (2020). Your Simple Guide To Creating Mission, Vision & Value Statements: For Entrepreneurs, Small Business, and Start Ups. Independently published. ISBN-13: 979-8637621620

Schönhaber, S. K. (n.d.). Mission and Vision Statements in an Organization: The Case of the ING Bank. ISBN-10: 3346258920

Pham, H. (2006). Reliability Modelling, Analysis and Optimization. Series on Quality, Reliability and Engineering Statistics: Volume 9. https://doi.org/10.1142/5870

Blischke, W. R., & Murthy, D. N. P. (2000). Reliability: Modeling, Prediction, and Optimization. Wiley. ISBN: 978-0-471-18450-8

Modeling Income Distributions and Lorenz Curves. (n.d.). Economic Studies in Inequality, Social Exclusion and Well-Being (EIAP, volume 5). ISBN: 978-0-387-72756-1. https://doi.org/10.1007/978-0-387-72796-7

Iyer, R. G. (2022). The Art of Creating Pareto Analysis: A Complete End-to-End Guide to Understand Pareto Charts and Easily Create them in Excel. Pareto Principle, Pareto Chart in Excel, 80:20 Rule, Pareto Analysis. ISBN-13: 979-8703551318

Saleh, J. H., & Marais, K. (2006). Highlights from the Early (and pre-) History of Reliability Engineering. Reliability Engineering and System Safety, 91(2), 249–256.

Saleh, J. H., & Marais, K. (2006). Highlights from the early (and pre-) history of reliability engineering. Reliability Engineering and System Safety, 91(2), 249–256. https://doi.org/10.1016/j.ress.2005.01.003

Padmanabhan, D. (2011). Reliability-Based Optimization for Multidisciplinary System Design: New Approaches and Applications. VDM Verlag Dr. Müller. ISBN-10: 3639241843

Global Benchmarking Network. (n.d.). Retrieved from https://www.globalbenchmarkingaward.com/

Stapenhurst, T. (2009). The Benchmarking Book: A How-to Guide to Best Practice for Managers and Practitioners. Elsevier. ISBN-10: 0750689056

Miller, J., Demeyer, A., & Nakane, J. (1992). Benchmarking Global Manufacturing: Understanding International Suppliers, Customers, and Competitors. Irwin Professional Publishing. ISBN-10: 1556236743

Bogan, C., & English, M. (1994). Benchmarking for Best Practices: Winning Through Innovative Adaptation. McGraw-Hill Professional. ISBN-10: 0070063753

Altenbach, H., & Bruhns, O. T. (2020). von Mises, Richard. In H. Altenbach & A. Öchsner (Eds.), Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55771-6_346

Chandrupatla, T. R., & Belegundu, A. D. (1996). Introduction to Finite Elements in Engineering (2nd ed.). Pearson Education (US). ISBN-10: 0132070367

O'Connor, J. J., & Robertson, E. F. (n.d.). Richard von Mises. School of Mathematics and Statistics, University of St Andrews, Scotland. Retrieved November 10, 2022, from https://mathshistory.st-andrews.ac.uk/Biographies/Mises/

Hua, Z., Yang, J., Coulibaly, S., & Zhang, B. (2006). Integration TRIZ with problem-solving tools: a literature review from 1995 to 2006. International Journal of Business Innovation and Research, 1(1–2), 111–128. https://doi.org/10.1504/IJBIR.2006.011091

Jana, R. (2010). The World According to TRIZ. Bloomberg Businessweek. Retrieved November 10, 2010.

Lin, P. T., Gea, H. C., & Jaluria, Y. (2011). A Modified Reliability Index Approach for Reliability-Based Design Optimization. Journal of Mechanical Design, 133(4). https://doi.org/10.1115/1.4003842

Carlson, C. (2012). Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes using Failure Mode and Effects Analysis. Wiley. ISBN: 978-1-118-00743-3

Mascia, A., Cirafici, A. M., & Bongiovanni, A., et al. (2020). A failure mode and effect analysis (FMEA)-based approach for risk assessment of scientific processes in non-regulated research laboratories. Accreditation and Quality Assurance, 25, 311–321. https://doi.org/10.1007/s00769-020-01441-9

Klett, J. (2010). Manufacturing Execution System – MES. Springer (2007 ed.). ISBN-10: 3642080642

Meyer, H., Fuchs, F., & Thiel, K. (2009). Manufacturing Execution Systems (MES): Optimal Design, Planning, and Deployment. McGraw-Hill. ISBN: 9780071626026

Cavazzuti, M. (2013). Deterministic Optimization. In Optimization Methods. Springer, Berlin, Heidelberg. ISBN: 978-3-642-31186-4. https://doi.org/10.1007/978-3-642-31187-1_4

Karlöf, B., Östblom, S., & Gilderson, A. J. (Trans.). (1994). Benchmarking: A Signpost to Excellence in Quality and Productivity. Wiley John & Sons. ISBN-10: 0471941808

Camp, R. C. (1989). Benchmarking: The Search for Industry Best Practices that Lead to Superior Performance. Productivity Press. ISBN-10: 0527916358

Hughes, T. J. R. (2012). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Dover Civil and Mechanical Engineering). Dover Publications. ISBN-13: 978-0486411811

Kim, N.-H., & Sankar, B. V. (2008). Introduction to Finite Element Analysis and Design. John Wiley & Sons. ISBN-10: 047012539X

Liu, G. R., & Quek, S. S. (2013). The Finite Element Method: A Practical Course (2nd ed.). Butterworth-Heinemann. ISBN-10: 0080983561

Tekkaya, A. E., & Soyarslan, C. (2014). Finite Element Method. In L. Laperrière & G. Reinhart (Eds.), CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20617-7_16699

Poli, C. (2001). Design for Manufacturing: A Structured Approach. Butterworth-Heinemann. ISBN-10: 0750673419

Dixon, J., & Poli, C. (1999). Engineering Design & Design for Manufacturing: A Structured Approach. Field Stone Pub. ISBN-10: 0964527200

Molloy, O., Warman, E. A., & Tilley, S. (1998). Design for Manufacturing and Assembly: Concepts, Architectures and Implementation. Springer. ISBN-10: 0412781905

Knast, P. (2021). Teoria sprawnego przygotowania i działania przemysłu produkującego wyroby na potrzeby armii i na wypadek zagrożenia [Theory of Efficient Preparation and Operation of the Military and Emergency Manufacturing Industry]. In J. Wołejszo, K. Malasiewicz, & N. Prusiński (Eds.), Prakseologia w naukach o bezpieczeństwa, Sprawność działania w bezpieczeństwa narodowym [Praxeology in Security Sciences, Performance in National Security] (pp. 209–236). Kalisz: Wydawnictwo Naukowe Akademii Kaliskiej im. Prezydenta Stanisława Wojciechowskiego. ISBN: 978-83-65872-48-7. Retrieved from https://wydawnictwo.akademia.kalisz.pl/download/prakseologia-w-naukach-o-bezpieczenstwie-sprawnosc-dzialania-w-bezpieczenstwie-narodowym/?wpdmdl=6654&refresh=625fb52e7aa261650439470

CNC-Turning Fundamentals. (n.d.). Retrieved November 20, 2022, from https://www2.htw-dresden.de/~manufact/home/cnctechnik/cnc1/cnc1_02e.htm

de Araujo, P. R. M., & Lins, R. G. (2020). Computer vision system for workpiece referencing in three-axis machining centres. International Journal of Advanced Manufacturing Technology, 106, 2007–2020. https://doi.org/10.1007/s00170-019-04626-w