Comparison of surface topography after lens-shape end mill and ball end mill machining


lens-shape end mill. barrel end mill. ball end mill. surface topography. surface roughness

How to Cite

Żurek, P., Żurawski, K., Szajna, A., Flejszar, R., & Sałata, M. (2021). Comparison of surface topography after lens-shape end mill and ball end mill machining. Technologia I Automatyzacja Montażu (Assembly Techniques and Technologies), 114(4), 9-15. Retrieved from


The article presents the results of comparative investigations concerning surface topography obtained as a result of machining the workpiece with ball end and lens-shape end mills. The analysis was conducted for various values of width of cutting ae and feed speed fz. The research results include the comparison of surface topography maps and parameters of linear and surface roughness. It was shown. as a result of the research. that the use of lens-shape end mill allows to obtain similar values of surface topography parameters to the obtained values in machining with ball end mill. while achieving more than twice the efficiency of machining. As a result. there was demonstrated the potential for the use of lens-shape end mills in finishing operations as a useful alternative to ball end mills.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 (



Altintas. Y. Lee. P. 1998. “Mechanics and Dynamics of Ball End Milling.” Journal of Manufacturing Science and Engineering. Transactions of the ASME 120 (4): 684–92.

Arizmendi. M. Fernández J.. López de Lacalle L. N.. Lamikiz A. Gil A. Sánchez J. A. Campa F. J. Veiga F. 2008. „Model development for the prediction of surfa¬ce topography generated by ball-end mills taking into account the tool parallel axis offset. Experimental va¬lidation.” CIRP Annals - Manufacturing Technology 57 (1): 101–104.

Artetxe. E. Urbikain G. Lamikiz A. López-De-Lacalle L. N.. González R. Rodal P. 2015. “A mechanistic cutting force model for new barrel end mills”. Procedia Engi¬neering 132: 553–560.

Burek J. Żurek P. Żurawski K. Sułkowicz P. 2016. "Programowanie procesu 5-osiowej symultanicznej obróbki frezem baryłkowym w aplikacji HyperMILL". Mechanik 2016/5-6: 470–471.

Burek J. Żurek P. Żurawski K. 2016. "Porównanie chropowatości powierzchni złożonych po obróbce fre¬zem barył-kowym oraz kulistym". Mechanik 2016/10: 1476–1477.

Burek J. Żyłka Ł. Żurek P. Żurawski K. Sałata M. 2017. "Badania symulacyjne warstwy skrawanej fre¬zem baryłkowym". Mechanik 2017/8-9:714–716.

Burek J. Żurek P.. Żurawski K. 2018 "Badania symu¬lacyjne siły skrawania w procesie obróbki frezem ba¬ryłkowym". Mechanik 2018/10: 901–903.

Engin S. Altintas Y. 1999 „Generalized modeling of milling mechanics and dynamics: Part I - helical end mills.” American Society of Mechanical Engineers. Manufacturing Engineering Division 10: 345–352.

Ferry W.B.S. 2008 „Virtual five-axis flank milling of jet engine impellers.” The University Of British Columbia.

Ferry W.B. Altintas Y. 2008 „Virtual five-axis flank mil¬ling of jet engine impellers - Part I: Mechanics of five¬-axis flank milling.” Journal of Manufacturing Scien¬ce and Engineering. Transactions of the ASME 130: 0110051–01100511.

Ghorbani. M.. Movahhedy M. R. 2019. “Extraction of Surface Curvatures from Tool Path Data and Predic¬tion of Cutting Forces in the Finish Milling of Sculptu¬red Surfaces.” Journal of Manufacturing Processes 45 (September): 273–89.

Larue. A. Altintas Y. 2005. „Simulation of Flank Milling Processes.” International Journal of Machine Tools and Manufacture 45 (4–5): 549–59.

Ming L. Dongqing Y. Baohai W.. Dinghua Z. 2016. „Barrel cutter design and toolpath planning for high-ef¬ficiency machining of freeform surface”. International Journal of Advanced ManufacturingTechnology 85 (9– 12): 2495–2503.Olvera. D. E. Artetxe. M. Luo. and G. Urbikain. 2020. „5-axis milling of complex parts with barrel-shape cutter: cutting force model and experi-mental validation”. Procedia Manufacturing 48 (2019): 528–532.

Seyed Ehsan. L. K. Ismail L. 2017. „3D surface to¬pography analysis in 5-axis ball-end milling”. CIRP Annals - Man-ufacturing Technology 66 (1): 133–136.

Urbikain. G. Olvera D. López de Lacalle L.N. 2016. „Stability Contour Maps with Barrel Cutters Conside¬ring the Tool Orientation.” The International Journal of Advanced Manufacturing Technology 2016 89:9 89 (9): 2491–2501.

Urbikain. G. Artetxe E. López de Lacalle L. N. 2017. „Numerical simulation of milling forces with barrel¬-shaped tools considering runout and tool inclination angles” Applied Mathematical Modelling 47: 619–636.

Urbikain. G. L. N.López de Lacalle. 2018. „Modelling of surface roughness in inclined milling operations with circle-segment end mills”. Simulation Modelling Practice and Theory 84: 161–176.

Urbikain Pelayo. G. 2019. “Modelling of static and dy¬namic milling forces in inclined operations with circ¬le-segment end mills”. Precision Engineering 56 (3): 123–135.

Urbikain Pelayo. G. Olvera-Trejo D. Luo M. López-De¬-Lacalle L. N. Elías-Zuniga A. 2021. „Surface rough¬ness prediction with new barrel-shape mill considering runout: Modeling and validation”. Measurement 173: 1–10.

Wang. D. Wu Yi C. Tian L. Ru Feng X. 2009. „Five-axis flank milling of sculptured surface with barrel cutters”. Key Engineering Materials 407–408 (2): 292–297.

Wojciechowski S. 2014 „Siły w procesie skrawania frezem kulistym zahartowanej stali” Politechnika Po¬znańska. Wydział Budowy Maszyn i Zarządzania. Po¬znań.

YaoAn. L. QingZhen B. BaoRui D. ShuLin C.. LiMin Z. Kai H. 2014. „Five-axis strip machining with barrel cut¬ter based on tolerance constraint for sculptured surfa¬ces” International Journal of Mechanical Aerospace. Industrial Mecatronic and Manufacturing Engineering 8 (10): 1779–1784.

EMUGE Corp. „Circle Segment Cutters.” https://www.¬ment-Turbine-Catalog-2020.pdf (2021.07)

Hoffman Group. „Dynamic 5-axis milling with GA¬RANT PPC mills and PPC indexable inserts.” https:// areas-of-appli¬cation/machining/solid-carbide-barrel-milling-cutter¬-garant-ppc/e/68093/. (2021.07).