Abstrakt
Przedstawiono podstawowe własności transportu ładunku i spinu poprzez wielowarstwowe struktury półprzewodnikowe, zawierające warstwy izolatorów. Układ półprzewodników przedzielonych warstwą izolatora stanowi rodzaj złącza tunelowego, poprzez które cząstki przedostają się wykorzystując zjawisko tunelowania kwantowego. Za pomocą dwóch złącz tunelowych zawierających bariery energetyczne w postaci materiału izolatora, konstruujemy kwantową studnię potencjału. W jej obszarze poziomy energetyczne ulegają skwantowaniu, przyjmując wyłącznie wartości dyskretne lub quasi-dyskretne. Ponadto prawdopodobieństwo tunelowania ładunków przez układ zawierający studnię potencjału zależy od tego czy energia padających cząstek znajduje się w koincydencji z dozwolonym w jamie tzw. rezonansowym poziomem energetycznym. Tego typu systemy stanowią podstawę funkcjonowania tzw. rezonansowych diod tunelowych. Przeanalizowano zależności od różnych parametrów układu, takich jak energia poziomu rezonansowego, szerokość barier potencjału, oraz wpływ pola magnetycznego na elektryczne oraz spinowe własności transportowanych cząstek. Badania te mają kluczowe znaczenie w projektowaniu urządzeń na
potrzeby spintroniki. Wykorzystują one polaryzację spinową prądu, akumulację spinu w studniach potencjału, manipulowanie spinem w układach elektronicznych przy wykorzystaniu pola magnetycznego oraz indukowanie magnetyzacji w obszarze studni kwantowej zawierającej rozszczepione spinowo poziomy rezonansowe.
Bibliografia
Kilgour M., Segal D., Tunneling diodes under environmental effects. Journal of Physical Chemistry C, 2015, 119, 25291
Figueiredo J.M.L., Ironside C.N., Stanley C.R., Electric field switching in a resonant tunneling diode electroabsorption modulator. IEEE Journal of Quantum Electronics, 2001, 37, pp. 1547-1552
Figueiredo J.M.L., Boyd A.R., Stanley C.R., Ironside C.N., McMeekin S.G., Leite A.M.P., Optical modulation at around 1550 nm in a InGa- AlAs optical waveguide containing a InGaAs/AlAs resonant tunnelling diode. Applied Physics Letters, 1999,
, pp. 3443-3445
Figueiredo J.M.L., Stanley C.R., Boyd A.R., Ironside C.N., Optical modulation in a resonant tunneling relaxation oscillator. Applied Physics Letters, 1999, 74, pp. 1197- 1199
Slobodskyy A., Gould C., Slobodskyy T., Becker C.R., Schmidt G., Molenkamp L.W., Voltage-controlled spin selection in a magnetic resonant tunneling diode. Physical Review Letters, 2003, 90, 246601
Du G.X., Wang S.G., Ma Q.L., Yan Wang, R.C., Ward C., Zhang X.G., Wang C., Kohn A., Han X.F., Spin-dependent tunneling spectroscopy for interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions. Physical Review B, 2010, 81, 064438
Zutic I., Fabian J., Das Sarma S., Spintronics: Fundamentals and applications. Reviews of Modern Physics, 2004, 76, 323
Nozaki T., Tezuka N., Inomata K., Quantum oscillation of the tunneling conductance in fully epitaxial double barrier magnetic tunnel junctions. Physical Review Letters, 2006, 96, 027208
Wang Y., Lu Z.Y., Zhang X.G., Han X.F., First-principles theory of quantum well resonance in double barrier magnetic tunnel junctions. Physical Review Letters, 2006, 97, 087210
Schmidt G., Ferrand D., Molenkamp L.W., Filip A.T., Wees B.J., Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Physical Review B, 2000, 62, R4790(R)
Fert A., Jaffrès H., Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Physical Review B, 2001, 64, 184420
López R., Sánchez D., Nonequilibrium spintronic transport through an artificial Kondo impurity: conductance, magnetoresistance, and shot noise. Physical Review Letters, 2003, 90, 116602
Chshiev M., Stoeffler D., Vedyayev A., Ounadjela K., Magnetic diode effect in double-barrier tunnel junctions. Europhys. Letters 58, 257 (2002); Journal of Magnetism and Magnetic Materials, 2002, 240, 146
Tiusan C., Greullet F., Hehn M., Montaigne F., Andrieu S., Schuhl A., Spin tunnelling phenomena in single-crystal magnetic tunnel junction systems. Journal of Physics: Condensed Matter, 2007, No. 16
Faure-Vincent J., Tiusan C., Bellouard C., Popova E., Hehn M., Montaigne F., Schuhl A., Interlayer magnetic coupling interactions of two ferromagnetic layers by spin polarized tunneling. Physical Review Letters 89, 107206 (2002); Erratum: Physical Review Letters, 2002, 89, 189902
Herranz D., Aliev F.G., Tiusan C., Hehn M., Dugaev V.K., Barnaś J., Tunneling in double barrier junctions with “hot spots”. Physical Review Letters, 2010, 105, 047207
Ling J., Resonant Tunneling Diodes: Theory of Operation and Applications. New York 14627, 1999
Fukuma Y., Wang L., Idzuchi H., Takahashi S., Maekawa S., Otani Y., Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Materials, 2011, 10, pp. 527–531
Sokolovski D., Siewert J., Baskin L.M., Symmetry-assisted resonance transmission of identical particles. Physical Review A, 2016, 93, 012705
Yamauchi Y., Sekiguchi K., Chida K., Arakawa T., Nakamura S., Kobayashi K., Ono T., Fujii T., Sakano R., Evolution of the Kondo effect in a quantum dot probed by shot noise. Physical Review Letters, 2011, 106, 176601
Figueiredo J.M.L., Ironside C.N., Stanley C.R., Ultra-low voltage resonant tunnelling diode electroabsorption modulator. Journal of Modern Optics, 2002, 49, 5, pp. 939- -945
. Hung N.V., Mazzamuto F., Bournel A., Dollfus P., Resonant tunneling diode based on graphene/h-BN heterostructure. Journal of Physics D: Applied Physics, 2012, 45, 325104
Saffarzadeh A., Daqiq R., Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode. Journal of Applied Physics, 2009, 106, 084308
Han W., Pi K., McCreary K.M., Li Y., Wong J.J. I., Swartz A.G., Kawakami R.K., Tunneling spin injection into single layer graphene. Physical Review Letters, 2010, 105, 167202
Kittel C., Introduction to Solid State Physics, John Wiley, New York, 2005