RESONANT TUNNELLING DIODE WITH MAGNETISED ELECTRODES
PDF

Keywords

resonant tunnelling diode
magnetic tunnelling diode
spintronics

Abstract

We analyse some basic properties of charge and spin transport in a semiconductor structure with an insulating barrier. In this system two semiconducting layers are separated by the insulator, creating a structure which is called a tunnel junction. The particles may pass through this junction according to the quantum tunnelling effect. By using two tunnel junctions with energy barriers made of insulating material, one can construct a quantum potential well . Inside the well the energy levels are quantised, which means that only discrete or quasi-discrete values of energy are allowed. Moreover, the probability of charge tunnelling through the system, which contains the potential well, depends on whether the energy of the incoming particles is in coincidence with the so-called resonant energy level. Such systems form the base of structures called resonant tunnelling diodes.

https://doi.org/10.7862/rf.2019.pfe.4
PDF

References

Kilgour M., Segal D., Tunneling diodes under environmental effects. Journal of Physical Chemistry C, 2015, 119, 25291

Figueiredo J.M.L., Ironside C.N., Stanley C.R., Electric field switching in a resonant tunneling diode electroabsorption modulator. IEEE Journal of Quantum Electronics, 2001, 37, pp. 1547-1552

Figueiredo J.M.L., Boyd A.R., Stanley C.R., Ironside C.N., McMeekin S.G., Leite A.M.P., Optical modulation at around 1550 nm in a InGa- AlAs optical waveguide containing a InGaAs/AlAs resonant tunnelling diode. Applied Physics Letters, 1999,

, pp. 3443-3445

Figueiredo J.M.L., Stanley C.R., Boyd A.R., Ironside C.N., Optical modulation in a resonant tunneling relaxation oscillator. Applied Physics Letters, 1999, 74, pp. 1197- 1199

Slobodskyy A., Gould C., Slobodskyy T., Becker C.R., Schmidt G., Molenkamp L.W., Voltage-controlled spin selection in a magnetic resonant tunneling diode. Physical Review Letters, 2003, 90, 246601

Du G.X., Wang S.G., Ma Q.L., Yan Wang, R.C., Ward C., Zhang X.G., Wang C., Kohn A., Han X.F., Spin-dependent tunneling spectroscopy for interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions. Physical Review B, 2010, 81, 064438

Zutic I., Fabian J., Das Sarma S., Spintronics: Fundamentals and applications. Reviews of Modern Physics, 2004, 76, 323

Nozaki T., Tezuka N., Inomata K., Quantum oscillation of the tunneling conductance in fully epitaxial double barrier magnetic tunnel junctions. Physical Review Letters, 2006, 96, 027208

Wang Y., Lu Z.Y., Zhang X.G., Han X.F., First-principles theory of quantum well resonance in double barrier magnetic tunnel junctions. Physical Review Letters, 2006, 97, 087210

Schmidt G., Ferrand D., Molenkamp L.W., Filip A.T., Wees B.J., Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Physical Review B, 2000, 62, R4790(R)

Fert A., Jaffrès H., Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Physical Review B, 2001, 64, 184420

López R., Sánchez D., Nonequilibrium spintronic transport through an artificial Kondo impurity: conductance, magnetoresistance, and shot noise. Physical Review Letters, 2003, 90, 116602

Chshiev M., Stoeffler D., Vedyayev A., Ounadjela K., Magnetic diode effect in double-barrier tunnel junctions. Europhys. Letters 58, 257 (2002); Journal of Magnetism and Magnetic Materials, 2002, 240, 146

Tiusan C., Greullet F., Hehn M., Montaigne F., Andrieu S., Schuhl A., Spin tunnelling phenomena in single-crystal magnetic tunnel junction systems. Journal of Physics: Condensed Matter, 2007, No. 16

Faure-Vincent J., Tiusan C., Bellouard C., Popova E., Hehn M., Montaigne F., Schuhl A., Interlayer magnetic coupling interactions of two ferromagnetic layers by spin polarized tunneling. Physical Review Letters 89, 107206 (2002); Erratum: Physical Review Letters, 2002, 89, 189902

Herranz D., Aliev F.G., Tiusan C., Hehn M., Dugaev V.K., Barnaś J., Tunneling in double barrier junctions with “hot spots”. Physical Review Letters, 2010, 105, 047207

Ling J., Resonant Tunneling Diodes: Theory of Operation and Applications. New York 14627, 1999

Fukuma Y., Wang L., Idzuchi H., Takahashi S., Maekawa S., Otani Y., Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Materials, 2011, 10, pp. 527–531

Sokolovski D., Siewert J., Baskin L.M., Symmetry-assisted resonance transmission of identical particles. Physical Review A, 2016, 93, 012705

Yamauchi Y., Sekiguchi K., Chida K., Arakawa T., Nakamura S., Kobayashi K., Ono T., Fujii T., Sakano R., Evolution of the Kondo effect in a quantum dot probed by shot noise. Physical Review Letters, 2011, 106, 176601

Figueiredo J.M.L., Ironside C.N., Stanley C.R., Ultra-low voltage resonant tunnelling diode electroabsorption modulator. Journal of Modern Optics, 2002, 49, 5, pp. 939- -945

. Hung N.V., Mazzamuto F., Bournel A., Dollfus P., Resonant tunneling diode based on graphene/h-BN heterostructure. Journal of Physics D: Applied Physics, 2012, 45, 325104

Saffarzadeh A., Daqiq R., Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode. Journal of Applied Physics, 2009, 106, 084308

Han W., Pi K., McCreary K.M., Li Y., Wong J.J. I., Swartz A.G., Kawakami R.K., Tunneling spin injection into single layer graphene. Physical Review Letters, 2010, 105, 167202

Kittel C., Introduction to Solid State Physics, John Wiley, New York, 2005